3.334 \(\int \frac {\cot ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\)

Optimal. Leaf size=361 \[ \frac {b^2 \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {\cot (c+d x)}{d \sqrt {a+b \sec (c+d x)}}-\frac {\cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{d \sqrt {a+b}}+\frac {\cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{d \sqrt {a+b}}+\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a d} \]

[Out]

cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-
b*(1+sec(d*x+c))/(a-b))^(1/2)/d/(a+b)^(1/2)-cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-
b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/d/(a+b)^(1/2)+2*cot(d*x+c)*EllipticP
i((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(
-b*(1+sec(d*x+c))/(a-b))^(1/2)/a/d-cot(d*x+c)/d/(a+b*sec(d*x+c))^(1/2)+b^2*tan(d*x+c)/(a^2-b^2)/d/(a+b*sec(d*x
+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.42, antiderivative size = 361, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3896, 3784, 3875, 3833, 21, 3829, 3832, 4004} \[ \frac {b^2 \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {\cot (c+d x)}{d \sqrt {a+b \sec (c+d x)}}-\frac {\cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{d \sqrt {a+b}}+\frac {\cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{d \sqrt {a+b}}+\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^2/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*
x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(Sqrt[a + b]*d) - (Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a
 + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c +
d*x]))/(a - b))])/(Sqrt[a + b]*d) + (2*Sqrt[a + b]*Cot[c + d*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c
+ d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a -
 b))])/(a*d) - Cot[c + d*x]/(d*Sqrt[a + b*Sec[c + d*x]]) + (b^2*Tan[c + d*x])/((a^2 - b^2)*d*Sqrt[a + b*Sec[c
+ d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 3784

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(2*Rt[a + b, 2]*Sqrt[(b*(1 - Csc[c + d*x])
)/(a + b)]*Sqrt[-((b*(1 + Csc[c + d*x]))/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[c + d*x]]/Rt[a
+ b, 2]], (a + b)/(a - b)])/(a*d*Cot[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3829

Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[a - b, Int[Csc[e + f
*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[b, Int[(Csc[e + f*x]*(1 + Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]],
 x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3833

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(b*Cot[e + f*x]*(a
 + b*Csc[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a +
b*Csc[e + f*x])^(m + 1)*(a*(m + 1) - b*(m + 2)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^
2, 0] && LtQ[m, -1] && IntegerQ[2*m]

Rule 3875

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)/cos[(e_.) + (f_.)*(x_)]^2, x_Symbol] :> Simp[(Tan[e + f*x]*(a
+ b*Csc[e + f*x])^m)/f, x] + Dist[b*m, Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e
, f, m}, x]

Rule 3896

Int[cot[(c_.) + (d_.)*(x_)]^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Int[ExpandIntegrand
[(a + b*Csc[c + d*x])^n, (-1 + Sec[c + d*x]^2)^(-(m/2)), x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 - b^2,
 0] && ILtQ[m/2, 0] && IntegerQ[n - 1/2] && EqQ[m, -2]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rubi steps

\begin {align*} \int \frac {\cot ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx &=\int \left (-\frac {1}{\sqrt {a+b \sec (c+d x)}}+\frac {\csc ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}}\right ) \, dx\\ &=-\int \frac {1}{\sqrt {a+b \sec (c+d x)}} \, dx+\int \frac {\csc ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=\frac {2 \sqrt {a+b} \cot (c+d x) \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a d}-\frac {\cot (c+d x)}{d \sqrt {a+b \sec (c+d x)}}-\frac {1}{2} b \int \frac {\sec (c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx\\ &=\frac {2 \sqrt {a+b} \cot (c+d x) \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a d}-\frac {\cot (c+d x)}{d \sqrt {a+b \sec (c+d x)}}+\frac {b^2 \tan (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {b \int \frac {\sec (c+d x) \left (-\frac {a}{2}-\frac {1}{2} b \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{a^2-b^2}\\ &=\frac {2 \sqrt {a+b} \cot (c+d x) \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a d}-\frac {\cot (c+d x)}{d \sqrt {a+b \sec (c+d x)}}+\frac {b^2 \tan (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}-\frac {b \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \, dx}{2 \left (a^2-b^2\right )}\\ &=\frac {2 \sqrt {a+b} \cot (c+d x) \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a d}-\frac {\cot (c+d x)}{d \sqrt {a+b \sec (c+d x)}}+\frac {b^2 \tan (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}-\frac {b \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{2 (a+b)}-\frac {b^2 \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{2 \left (a^2-b^2\right )}\\ &=\frac {\cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{\sqrt {a+b} d}-\frac {\cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{\sqrt {a+b} d}+\frac {2 \sqrt {a+b} \cot (c+d x) \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a d}-\frac {\cot (c+d x)}{d \sqrt {a+b \sec (c+d x)}}+\frac {b^2 \tan (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 19.02, size = 1198, normalized size = 3.32 \[ \frac {(b+a \cos (c+d x)) \sec (c+d x) \left (\frac {(a \cos (c+d x)-b) \csc (c+d x)}{b^2-a^2}+\frac {b \sin (c+d x)}{b^2-a^2}\right )}{d \sqrt {a+b \sec (c+d x)}}-\frac {\sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)} \left (-b^2 \sqrt {\frac {b-a}{a+b}} \tan ^5\left (\frac {1}{2} (c+d x)\right )+a b \sqrt {\frac {b-a}{a+b}} \tan ^5\left (\frac {1}{2} (c+d x)\right )-2 a b \sqrt {\frac {b-a}{a+b}} \tan ^3\left (\frac {1}{2} (c+d x)\right )+4 i a^2 \Pi \left (-\frac {a+b}{a-b};i \sinh ^{-1}\left (\sqrt {\frac {b-a}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a+b}{a-b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b}{a+b}} \tan ^2\left (\frac {1}{2} (c+d x)\right )-4 i b^2 \Pi \left (-\frac {a+b}{a-b};i \sinh ^{-1}\left (\sqrt {\frac {b-a}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a+b}{a-b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b}{a+b}} \tan ^2\left (\frac {1}{2} (c+d x)\right )+b^2 \sqrt {\frac {b-a}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )+a b \sqrt {\frac {b-a}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )-i (a-b) b E\left (i \sinh ^{-1}\left (\sqrt {\frac {b-a}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a+b}{a-b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )+1\right ) \sqrt {\frac {-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b}{a+b}}-i \left (2 a^2-b a-b^2\right ) F\left (i \sinh ^{-1}\left (\sqrt {\frac {b-a}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a+b}{a-b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )+1\right ) \sqrt {\frac {-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b}{a+b}}+4 i a^2 \Pi \left (-\frac {a+b}{a-b};i \sinh ^{-1}\left (\sqrt {\frac {b-a}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a+b}{a-b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b}{a+b}}-4 i b^2 \Pi \left (-\frac {a+b}{a-b};i \sinh ^{-1}\left (\sqrt {\frac {b-a}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a+b}{a-b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b}{a+b}}\right )}{\sqrt {\frac {b-a}{a+b}} \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)} \sqrt {\frac {\tan ^2\left (\frac {1}{2} (c+d x)\right )+1}{1-\tan ^2\left (\frac {1}{2} (c+d x)\right )}} \sqrt {\frac {-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b}{\tan ^2\left (\frac {1}{2} (c+d x)\right )+1}} \left (\tan ^4\left (\frac {1}{2} (c+d x)\right )-1\right )} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Cot[c + d*x]^2/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

((b + a*Cos[c + d*x])*Sec[c + d*x]*(((-b + a*Cos[c + d*x])*Csc[c + d*x])/(-a^2 + b^2) + (b*Sin[c + d*x])/(-a^2
 + b^2)))/(d*Sqrt[a + b*Sec[c + d*x]]) - (Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(a*b*Sqrt[(-a + b)/(a +
b)]*Tan[(c + d*x)/2] + b^2*Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2] - 2*a*b*Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x
)/2]^3 + a*b*Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]^5 - b^2*Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]^5 + (4*I)
*a^2*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[
1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - (4*I)*b^2*Ellipt
icPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[1 - Tan[(c
+ d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + (4*I)*a^2*EllipticPi[-((a +
 b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Tan[(c + d*x)/2]^2*Sqrt[1 -
 Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - (4*I)*b^2*EllipticP
i[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Tan[(c + d*x)/2]^2*
Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - I*(a - b)*b
*EllipticE[I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(
1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - I*(2*a^2 - a*b -
 b^2)*EllipticF[I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[1 - Tan[(c + d*x)/2]
^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)]))/(Sqrt[(-a +
 b)/(a + b)]*(a^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x]]*Sqrt[(1 + Tan[(c + d*x)/2]^2)/(1 - Tan[(c + d*x)/2]^2)]*Sq
rt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(1 + Tan[(c + d*x)/2]^2)]*(-1 + Tan[(c + d*x)/2]^4))

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cot \left (d x + c\right )^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(cot(d*x + c)^2/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

maple [B]  time = 1.71, size = 1409, normalized size = 3.90 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^2/(a+b*sec(d*x+c))^(1/2),x)

[Out]

1/d*(-1+cos(d*x+c))^2*(4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*Ellip
ticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*a^2*sin(d*x+c)*cos(d*x+c)-4*(cos(d*x+c)/(1+cos(d*x+c)
))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^
(1/2))*b^2*sin(d*x+c)*cos(d*x+c)-2*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*cos(d*x+c)*a^2*(c
os(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)+cos(d*x+c)*(cos(d*x+c
)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a
-b)/(a+b))^(1/2))*sin(d*x+c)*a*b+3*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c
))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*b^2-cos(d*x+c)*(cos(d*x+c
)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a
-b)/(a+b))^(1/2))*sin(d*x+c)*a*b-EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*cos(d*x+c)*b^2*(cos
(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)+4*(cos(d*x+c)/(1+cos(d*
x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+
b))^(1/2))*a^2*sin(d*x+c)-4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*El
lipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*b^2*sin(d*x+c)-2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)
*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*s
in(d*x+c)+EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*co
s(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*a*b+3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+
cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^2*sin(d*x+c)-EllipticE((-
1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c
))/(a+b))^(1/2)*sin(d*x+c)*a*b-EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^2*(cos(d*x+c)/(1+co
s(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)-cos(d*x+c)^2*a^2+cos(d*x+c)^2*a*b-a*
b*cos(d*x+c)+cos(d*x+c)*b^2)*(1+cos(d*x+c))^2*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)/(b+a*cos(d*x+c))/sin(d*x+c)^
5/(a-b)/(a+b)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cot \left (d x + c\right )^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(cot(d*x + c)^2/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\mathrm {cot}\left (c+d\,x\right )}^2}{\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)^2/(a + b/cos(c + d*x))^(1/2),x)

[Out]

int(cot(c + d*x)^2/(a + b/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cot ^{2}{\left (c + d x \right )}}{\sqrt {a + b \sec {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**2/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral(cot(c + d*x)**2/sqrt(a + b*sec(c + d*x)), x)

________________________________________________________________________________________