3.342 \(\int \frac {1}{(a+b \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=347 \[ \frac {2 b^2 \tan (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a^2 d}-\frac {2 \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a d \sqrt {a+b}}+\frac {2 \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a d \sqrt {a+b}} \]

[Out]

2*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*
(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a/d/(a+b)^(1/2)-2*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+
b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a/d/(a+b)^(1/2)-2*cot(d*x+c)*E
llipticPi((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))
^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/d+2*b^2*tan(d*x+c)/a/(a^2-b^2)/d/(a+b*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.32, antiderivative size = 347, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {3785, 4058, 3921, 3784, 3832, 4004} \[ \frac {2 b^2 \tan (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a^2 d}-\frac {2 \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a d \sqrt {a+b}}+\frac {2 \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a d \sqrt {a+b}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[c + d*x])^(-3/2),x]

[Out]

(2*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c +
d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(a*Sqrt[a + b]*d) - (2*Cot[c + d*x]*EllipticF[ArcSin[
Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Se
c[c + d*x]))/(a - b))])/(a*Sqrt[a + b]*d) - (2*Sqrt[a + b]*Cot[c + d*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a +
b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x
]))/(a - b))])/(a^2*d) + (2*b^2*Tan[c + d*x])/(a*(a^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x]])

Rule 3784

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(2*Rt[a + b, 2]*Sqrt[(b*(1 - Csc[c + d*x])
)/(a + b)]*Sqrt[-((b*(1 + Csc[c + d*x]))/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[c + d*x]]/Rt[a
+ b, 2]], (a + b)/(a - b)])/(a*d*Cot[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3785

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Simp[(b^2*Cot[c + d*x]*(a + b*Csc[c + d*x])^(n +
 1))/(a*d*(n + 1)*(a^2 - b^2)), x] + Dist[1/(a*(n + 1)*(a^2 - b^2)), Int[(a + b*Csc[c + d*x])^(n + 1)*Simp[(a^
2 - b^2)*(n + 1) - a*b*(n + 1)*Csc[c + d*x] + b^2*(n + 2)*Csc[c + d*x]^2, x], x], x] /; FreeQ[{a, b, c, d}, x]
 && NeQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3921

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4058

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)], x_Symbol] :> Int[(A + (B - C)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[(Csc[e + f*
x]*(1 + Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0
]

Rubi steps

\begin {align*} \int \frac {1}{(a+b \sec (c+d x))^{3/2}} \, dx &=\frac {2 b^2 \tan (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}-\frac {2 \int \frac {\frac {1}{2} \left (-a^2+b^2\right )+\frac {1}{2} a b \sec (c+d x)+\frac {1}{2} b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{a \left (a^2-b^2\right )}\\ &=\frac {2 b^2 \tan (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}-\frac {2 \int \frac {\frac {1}{2} \left (-a^2+b^2\right )+\left (\frac {a b}{2}-\frac {b^2}{2}\right ) \sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{a \left (a^2-b^2\right )}-\frac {b^2 \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{a \left (a^2-b^2\right )}\\ &=\frac {2 \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a \sqrt {a+b} d}+\frac {2 b^2 \tan (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {\int \frac {1}{\sqrt {a+b \sec (c+d x)}} \, dx}{a}-\frac {b \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{a (a+b)}\\ &=\frac {2 \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a \sqrt {a+b} d}-\frac {2 \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a \sqrt {a+b} d}-\frac {2 \sqrt {a+b} \cot (c+d x) \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a^2 d}+\frac {2 b^2 \tan (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 6.16, size = 1249, normalized size = 3.60 \[ \text {result too large to display} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*Sec[c + d*x])^(-3/2),x]

[Out]

((b + a*Cos[c + d*x])^2*Sec[c + d*x]^2*((2*b*Sin[c + d*x])/(a*(-a^2 + b^2)) + (2*b^2*Sin[c + d*x])/(a*(a^2 - b
^2)*(b + a*Cos[c + d*x]))))/(d*(a + b*Sec[c + d*x])^(3/2)) + (2*(b + a*Cos[c + d*x])^(3/2)*Sec[c + d*x]^(3/2)*
Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(1 + Tan[(c + d*x)/2]^2)]*(a*b*Sqrt[(-a + b)/(a + b
)]*Tan[(c + d*x)/2] + b^2*Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2] - 2*a*b*Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)
/2]^3 + a*b*Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]^5 - b^2*Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]^5 - (2*I)*
a^2*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[1
 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + (2*I)*b^2*Ellipti
cPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[1 - Tan[(c +
 d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - (2*I)*a^2*EllipticPi[-((a +
b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Tan[(c + d*x)/2]^2*Sqrt[1 -
Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + (2*I)*b^2*EllipticPi
[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Tan[(c + d*x)/2]^2*S
qrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - I*(a - b)*b*
EllipticE[I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1
 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + I*(a^2 + a*b - 2*
b^2)*EllipticF[I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[1 - Tan[(c + d*x)/2]^
2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)]))/(a*Sqrt[(-a
+ b)/(a + b)]*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^(3/2)*(-1 + Tan[(c + d*x)/2]^2)*Sqrt[(1 + Tan[(c + d*x)/2]^2)
/(1 - Tan[(c + d*x)/2]^2)]*(a*(-1 + Tan[(c + d*x)/2]^2) - b*(1 + Tan[(c + d*x)/2]^2)))

________________________________________________________________________________________

fricas [F]  time = 23.57, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {b \sec \left (d x + c\right ) + a}}{b^{2} \sec \left (d x + c\right )^{2} + 2 \, a b \sec \left (d x + c\right ) + a^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(d*x + c) + a)/(b^2*sec(d*x + c)^2 + 2*a*b*sec(d*x + c) + a^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^(-3/2), x)

________________________________________________________________________________________

maple [B]  time = 1.25, size = 1209, normalized size = 3.48 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*sec(d*x+c))^(3/2),x)

[Out]

1/d*4^(1/2)*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*cos
(d*x+c)*a^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)+cos(d*x
+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/
sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b-cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/
(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b-EllipticE
((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*cos(d*x+c)*b^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*
x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)-2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+
c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*a^2*sin(d*x+c)*cos(d*x+c)+2*(co
s(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*
x+c),-1,((a-b)/(a+b))^(1/2))*b^2*sin(d*x+c)*cos(d*x+c)+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+
cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*sin(d*x+c)+EllipticF((-
1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c
))/(a+b))^(1/2)*sin(d*x+c)*a*b-EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*
x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*a*b-EllipticE((-1+cos(d*x+c))/sin(d*x+c)
,((a-b)/(a+b))^(1/2))*b^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(
d*x+c)-2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*
x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*a^2*sin(d*x+c)+2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/
(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*b^2*sin(d*x+c)+cos(d
*x+c)^2*a*b-cos(d*x+c)^2*b^2-a*b*cos(d*x+c)+cos(d*x+c)*b^2)/(b+a*cos(d*x+c))/sin(d*x+c)/a/(a+b)/(a-b)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^(-3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {1}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + b/cos(c + d*x))^(3/2),x)

[Out]

int(1/(a + b/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(d*x+c))**(3/2),x)

[Out]

Integral((a + b*sec(c + d*x))**(-3/2), x)

________________________________________________________________________________________