3.135 \(\int \frac {1}{(a \cos (c+d x)+b \sin (c+d x))^3} \, dx\)

Optimal. Leaf size=103 \[ -\frac {b \cos (c+d x)-a \sin (c+d x)}{2 d \left (a^2+b^2\right ) (a \cos (c+d x)+b \sin (c+d x))^2}-\frac {\tanh ^{-1}\left (\frac {b \cos (c+d x)-a \sin (c+d x)}{\sqrt {a^2+b^2}}\right )}{2 d \left (a^2+b^2\right )^{3/2}} \]

[Out]

-1/2*arctanh((b*cos(d*x+c)-a*sin(d*x+c))/(a^2+b^2)^(1/2))/(a^2+b^2)^(3/2)/d+1/2*(-b*cos(d*x+c)+a*sin(d*x+c))/(
a^2+b^2)/d/(a*cos(d*x+c)+b*sin(d*x+c))^2

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 103, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {3076, 3074, 206} \[ -\frac {b \cos (c+d x)-a \sin (c+d x)}{2 d \left (a^2+b^2\right ) (a \cos (c+d x)+b \sin (c+d x))^2}-\frac {\tanh ^{-1}\left (\frac {b \cos (c+d x)-a \sin (c+d x)}{\sqrt {a^2+b^2}}\right )}{2 d \left (a^2+b^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a*Cos[c + d*x] + b*Sin[c + d*x])^(-3),x]

[Out]

-ArcTanh[(b*Cos[c + d*x] - a*Sin[c + d*x])/Sqrt[a^2 + b^2]]/(2*(a^2 + b^2)^(3/2)*d) - (b*Cos[c + d*x] - a*Sin[
c + d*x])/(2*(a^2 + b^2)*d*(a*Cos[c + d*x] + b*Sin[c + d*x])^2)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3074

Int[(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> -Dist[d^(-1), Subst[Int
[1/(a^2 + b^2 - x^2), x], x, b*Cos[c + d*x] - a*Sin[c + d*x]], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2,
0]

Rule 3076

Int[(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[((b*Cos[c + d*x] -
 a*Sin[c + d*x])*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 1))/(d*(n + 1)*(a^2 + b^2)), x] + Dist[(n + 2)/((n + 1
)*(a^2 + b^2)), Int[(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b
^2, 0] && LtQ[n, -1] && NeQ[n, -2]

Rubi steps

\begin {align*} \int \frac {1}{(a \cos (c+d x)+b \sin (c+d x))^3} \, dx &=-\frac {b \cos (c+d x)-a \sin (c+d x)}{2 \left (a^2+b^2\right ) d (a \cos (c+d x)+b \sin (c+d x))^2}+\frac {\int \frac {1}{a \cos (c+d x)+b \sin (c+d x)} \, dx}{2 \left (a^2+b^2\right )}\\ &=-\frac {b \cos (c+d x)-a \sin (c+d x)}{2 \left (a^2+b^2\right ) d (a \cos (c+d x)+b \sin (c+d x))^2}-\frac {\operatorname {Subst}\left (\int \frac {1}{a^2+b^2-x^2} \, dx,x,b \cos (c+d x)-a \sin (c+d x)\right )}{2 \left (a^2+b^2\right ) d}\\ &=-\frac {\tanh ^{-1}\left (\frac {b \cos (c+d x)-a \sin (c+d x)}{\sqrt {a^2+b^2}}\right )}{2 \left (a^2+b^2\right )^{3/2} d}-\frac {b \cos (c+d x)-a \sin (c+d x)}{2 \left (a^2+b^2\right ) d (a \cos (c+d x)+b \sin (c+d x))^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.27, size = 132, normalized size = 1.28 \[ \frac {\left (a^2+b^2\right ) (a \sin (c+d x)-b \cos (c+d x))+2 \sqrt {a^2+b^2} (a \cos (c+d x)+b \sin (c+d x))^2 \tanh ^{-1}\left (\frac {a \tan \left (\frac {1}{2} (c+d x)\right )-b}{\sqrt {a^2+b^2}}\right )}{2 d (a-i b)^2 (a+i b)^2 (a \cos (c+d x)+b \sin (c+d x))^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*Cos[c + d*x] + b*Sin[c + d*x])^(-3),x]

[Out]

((a^2 + b^2)*(-(b*Cos[c + d*x]) + a*Sin[c + d*x]) + 2*Sqrt[a^2 + b^2]*ArcTanh[(-b + a*Tan[(c + d*x)/2])/Sqrt[a
^2 + b^2]]*(a*Cos[c + d*x] + b*Sin[c + d*x])^2)/(2*(a - I*b)^2*(a + I*b)^2*d*(a*Cos[c + d*x] + b*Sin[c + d*x])
^2)

________________________________________________________________________________________

fricas [B]  time = 0.61, size = 294, normalized size = 2.85 \[ \frac {{\left (2 \, a b \cos \left (d x + c\right ) \sin \left (d x + c\right ) + {\left (a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} + b^{2}\right )} \sqrt {a^{2} + b^{2}} \log \left (-\frac {2 \, a b \cos \left (d x + c\right ) \sin \left (d x + c\right ) + {\left (a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a^{2} - b^{2} + 2 \, \sqrt {a^{2} + b^{2}} {\left (b \cos \left (d x + c\right ) - a \sin \left (d x + c\right )\right )}}{2 \, a b \cos \left (d x + c\right ) \sin \left (d x + c\right ) + {\left (a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} + b^{2}}\right ) - 2 \, {\left (a^{2} b + b^{3}\right )} \cos \left (d x + c\right ) + 2 \, {\left (a^{3} + a b^{2}\right )} \sin \left (d x + c\right )}{4 \, {\left ({\left (a^{6} + a^{4} b^{2} - a^{2} b^{4} - b^{6}\right )} d \cos \left (d x + c\right )^{2} + 2 \, {\left (a^{5} b + 2 \, a^{3} b^{3} + a b^{5}\right )} d \cos \left (d x + c\right ) \sin \left (d x + c\right ) + {\left (a^{4} b^{2} + 2 \, a^{2} b^{4} + b^{6}\right )} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*cos(d*x+c)+b*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

1/4*((2*a*b*cos(d*x + c)*sin(d*x + c) + (a^2 - b^2)*cos(d*x + c)^2 + b^2)*sqrt(a^2 + b^2)*log(-(2*a*b*cos(d*x
+ c)*sin(d*x + c) + (a^2 - b^2)*cos(d*x + c)^2 - 2*a^2 - b^2 + 2*sqrt(a^2 + b^2)*(b*cos(d*x + c) - a*sin(d*x +
 c)))/(2*a*b*cos(d*x + c)*sin(d*x + c) + (a^2 - b^2)*cos(d*x + c)^2 + b^2)) - 2*(a^2*b + b^3)*cos(d*x + c) + 2
*(a^3 + a*b^2)*sin(d*x + c))/((a^6 + a^4*b^2 - a^2*b^4 - b^6)*d*cos(d*x + c)^2 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)
*d*cos(d*x + c)*sin(d*x + c) + (a^4*b^2 + 2*a^2*b^4 + b^6)*d)

________________________________________________________________________________________

giac [B]  time = 1.59, size = 221, normalized size = 2.15 \[ -\frac {\frac {\log \left (\frac {{\left | 2 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, b - 2 \, \sqrt {a^{2} + b^{2}} \right |}}{{\left | 2 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, b + 2 \, \sqrt {a^{2} + b^{2}} \right |}}\right )}{{\left (a^{2} + b^{2}\right )}^{\frac {3}{2}}} - \frac {2 \, {\left (a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 2 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - a^{2} b\right )}}{{\left (a^{4} + a^{2} b^{2}\right )} {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - a\right )}^{2}}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*cos(d*x+c)+b*sin(d*x+c))^3,x, algorithm="giac")

[Out]

-1/2*(log(abs(2*a*tan(1/2*d*x + 1/2*c) - 2*b - 2*sqrt(a^2 + b^2))/abs(2*a*tan(1/2*d*x + 1/2*c) - 2*b + 2*sqrt(
a^2 + b^2)))/(a^2 + b^2)^(3/2) - 2*(a^3*tan(1/2*d*x + 1/2*c)^3 + 2*a*b^2*tan(1/2*d*x + 1/2*c)^3 + a^2*b*tan(1/
2*d*x + 1/2*c)^2 - 2*b^3*tan(1/2*d*x + 1/2*c)^2 + a^3*tan(1/2*d*x + 1/2*c) - 2*a*b^2*tan(1/2*d*x + 1/2*c) - a^
2*b)/((a^4 + a^2*b^2)*(a*tan(1/2*d*x + 1/2*c)^2 - 2*b*tan(1/2*d*x + 1/2*c) - a)^2))/d

________________________________________________________________________________________

maple [A]  time = 0.26, size = 191, normalized size = 1.85 \[ \frac {-\frac {2 \left (-\frac {\left (a^{2}+2 b^{2}\right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a \left (a^{2}+b^{2}\right )}-\frac {b \left (a^{2}-2 b^{2}\right ) \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 \left (a^{2}+b^{2}\right ) a^{2}}-\frac {\left (a^{2}-2 b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a \left (a^{2}+b^{2}\right )}+\frac {b}{2 a^{2}+2 b^{2}}\right )}{\left (\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -2 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-a \right )^{2}}+\frac {\arctanh \left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-2 b}{2 \sqrt {a^{2}+b^{2}}}\right )}{\left (a^{2}+b^{2}\right )^{\frac {3}{2}}}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*cos(d*x+c)+b*sin(d*x+c))^3,x)

[Out]

1/d*(-2*(-1/2*(a^2+2*b^2)/a/(a^2+b^2)*tan(1/2*d*x+1/2*c)^3-1/2*b*(a^2-2*b^2)/(a^2+b^2)/a^2*tan(1/2*d*x+1/2*c)^
2-1/2*(a^2-2*b^2)/a/(a^2+b^2)*tan(1/2*d*x+1/2*c)+1/2*b/(a^2+b^2))/(tan(1/2*d*x+1/2*c)^2*a-2*b*tan(1/2*d*x+1/2*
c)-a)^2+1/(a^2+b^2)^(3/2)*arctanh(1/2*(2*a*tan(1/2*d*x+1/2*c)-2*b)/(a^2+b^2)^(1/2)))

________________________________________________________________________________________

maxima [B]  time = 0.46, size = 326, normalized size = 3.17 \[ -\frac {\frac {2 \, {\left (a^{2} b - \frac {{\left (a^{3} - 2 \, a b^{2}\right )} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {{\left (a^{2} b - 2 \, b^{3}\right )} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {{\left (a^{3} + 2 \, a b^{2}\right )} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}\right )}}{a^{6} + a^{4} b^{2} + \frac {4 \, {\left (a^{5} b + a^{3} b^{3}\right )} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {2 \, {\left (a^{6} - a^{4} b^{2} - 2 \, a^{2} b^{4}\right )} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {4 \, {\left (a^{5} b + a^{3} b^{3}\right )} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {{\left (a^{6} + a^{4} b^{2}\right )} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}} + \frac {\log \left (\frac {b - \frac {a \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \sqrt {a^{2} + b^{2}}}{b - \frac {a \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \sqrt {a^{2} + b^{2}}}\right )}{{\left (a^{2} + b^{2}\right )}^{\frac {3}{2}}}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*cos(d*x+c)+b*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/2*(2*(a^2*b - (a^3 - 2*a*b^2)*sin(d*x + c)/(cos(d*x + c) + 1) - (a^2*b - 2*b^3)*sin(d*x + c)^2/(cos(d*x + c
) + 1)^2 - (a^3 + 2*a*b^2)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3)/(a^6 + a^4*b^2 + 4*(a^5*b + a^3*b^3)*sin(d*x +
 c)/(cos(d*x + c) + 1) - 2*(a^6 - a^4*b^2 - 2*a^2*b^4)*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 - 4*(a^5*b + a^3*b^
3)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + (a^6 + a^4*b^2)*sin(d*x + c)^4/(cos(d*x + c) + 1)^4) + log((b - a*sin
(d*x + c)/(cos(d*x + c) + 1) + sqrt(a^2 + b^2))/(b - a*sin(d*x + c)/(cos(d*x + c) + 1) - sqrt(a^2 + b^2)))/(a^
2 + b^2)^(3/2))/d

________________________________________________________________________________________

mupad [B]  time = 2.73, size = 260, normalized size = 2.52 \[ \frac {\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (a^2-2\,b^2\right )}{a\,\left (a^2+b^2\right )}-\frac {b}{a^2+b^2}+\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (a^2+2\,b^2\right )}{a\,\left (a^2+b^2\right )}+\frac {b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (a^2-2\,b^2\right )}{a^2\,\left (a^2+b^2\right )}}{d\,\left (a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (2\,a^2-4\,b^2\right )+a^2-4\,a\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+4\,a\,b\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}+\frac {\mathrm {atanh}\left (\frac {\left (2\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-\frac {2\,a^2\,b+2\,b^3}{a^2+b^2}\right )\,\left (\frac {a^2}{2}+\frac {b^2}{2}\right )}{{\left (a^2+b^2\right )}^{3/2}}\right )}{d\,{\left (a^2+b^2\right )}^{3/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*cos(c + d*x) + b*sin(c + d*x))^3,x)

[Out]

((tan(c/2 + (d*x)/2)*(a^2 - 2*b^2))/(a*(a^2 + b^2)) - b/(a^2 + b^2) + (tan(c/2 + (d*x)/2)^3*(a^2 + 2*b^2))/(a*
(a^2 + b^2)) + (b*tan(c/2 + (d*x)/2)^2*(a^2 - 2*b^2))/(a^2*(a^2 + b^2)))/(d*(a^2*tan(c/2 + (d*x)/2)^4 - tan(c/
2 + (d*x)/2)^2*(2*a^2 - 4*b^2) + a^2 - 4*a*b*tan(c/2 + (d*x)/2)^3 + 4*a*b*tan(c/2 + (d*x)/2))) + atanh(((2*a*t
an(c/2 + (d*x)/2) - (2*a^2*b + 2*b^3)/(a^2 + b^2))*(a^2/2 + b^2/2))/(a^2 + b^2)^(3/2))/(d*(a^2 + b^2)^(3/2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*cos(d*x+c)+b*sin(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________