3.170 \(\int \frac {\sec ^2(c+d x)}{(a \cos (c+d x)+i a \sin (c+d x))^2} \, dx\)

Optimal. Leaf size=55 \[ -\frac {\tan (c+d x)}{a^2 d}+\frac {2 i \log (\sin (c+d x))}{a^2 d}-\frac {2 i \log (\tan (c+d x))}{a^2 d}+\frac {2 x}{a^2} \]

[Out]

2*x/a^2+2*I*ln(sin(d*x+c))/a^2/d-2*I*ln(tan(d*x+c))/a^2/d-tan(d*x+c)/a^2/d

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 55, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {3088, 848, 77} \[ -\frac {\tan (c+d x)}{a^2 d}+\frac {2 i \log (\sin (c+d x))}{a^2 d}-\frac {2 i \log (\tan (c+d x))}{a^2 d}+\frac {2 x}{a^2} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2/(a*Cos[c + d*x] + I*a*Sin[c + d*x])^2,x]

[Out]

(2*x)/a^2 + ((2*I)*Log[Sin[c + d*x]])/(a^2*d) - ((2*I)*Log[Tan[c + d*x]])/(a^2*d) - Tan[c + d*x]/(a^2*d)

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rule 848

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)
^(m + p)*(f + g*x)^n*(a/d + (c*x)/e)^p, x] /; FreeQ[{a, c, d, e, f, g, m, n}, x] && NeQ[e*f - d*g, 0] && EqQ[c
*d^2 + a*e^2, 0] && (IntegerQ[p] || (GtQ[a, 0] && GtQ[d, 0] && EqQ[m + p, 0]))

Rule 3088

Int[cos[(c_.) + (d_.)*(x_)]^(m_.)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symb
ol] :> -Dist[d^(-1), Subst[Int[(x^m*(b + a*x)^n)/(1 + x^2)^((m + n + 2)/2), x], x, Cot[c + d*x]], x] /; FreeQ[
{a, b, c, d}, x] && IntegerQ[n] && IntegerQ[(m + n)/2] && NeQ[n, -1] &&  !(GtQ[n, 0] && GtQ[m, 1])

Rubi steps

\begin {align*} \int \frac {\sec ^2(c+d x)}{(a \cos (c+d x)+i a \sin (c+d x))^2} \, dx &=-\frac {\operatorname {Subst}\left (\int \frac {1+x^2}{x^2 (i a+a x)^2} \, dx,x,\cot (c+d x)\right )}{d}\\ &=-\frac {\operatorname {Subst}\left (\int \frac {-\frac {i}{a}+\frac {x}{a}}{x^2 (i a+a x)} \, dx,x,\cot (c+d x)\right )}{d}\\ &=-\frac {\operatorname {Subst}\left (\int \left (-\frac {1}{a^2 x^2}-\frac {2 i}{a^2 x}+\frac {2 i}{a^2 (i+x)}\right ) \, dx,x,\cot (c+d x)\right )}{d}\\ &=\frac {2 x}{a^2}+\frac {2 i \log (\sin (c+d x))}{a^2 d}-\frac {2 i \log (\tan (c+d x))}{a^2 d}-\frac {\tan (c+d x)}{a^2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.42, size = 71, normalized size = 1.29 \[ \frac {4 \tan ^{-1}(\tan (d x))+i \sec (c) \sec (c+d x) \left (\cos (d x) \log \left (\cos ^2(c+d x)\right )+\cos (2 c+d x) \log \left (\cos ^2(c+d x)\right )+2 i \sin (d x)\right )}{2 a^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2/(a*Cos[c + d*x] + I*a*Sin[c + d*x])^2,x]

[Out]

(4*ArcTan[Tan[d*x]] + I*Sec[c]*Sec[c + d*x]*(Cos[d*x]*Log[Cos[c + d*x]^2] + Cos[2*c + d*x]*Log[Cos[c + d*x]^2]
 + (2*I)*Sin[d*x]))/(2*a^2*d)

________________________________________________________________________________________

fricas [A]  time = 0.59, size = 68, normalized size = 1.24 \[ \frac {4 \, d x e^{\left (2 i \, d x + 2 i \, c\right )} + 4 \, d x + {\left (2 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + 2 i\right )} \log \left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right ) - 2 i}{a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a*cos(d*x+c)+I*a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

(4*d*x*e^(2*I*d*x + 2*I*c) + 4*d*x + (2*I*e^(2*I*d*x + 2*I*c) + 2*I)*log(e^(2*I*d*x + 2*I*c) + 1) - 2*I)/(a^2*
d*e^(2*I*d*x + 2*I*c) + a^2*d)

________________________________________________________________________________________

giac [A]  time = 2.93, size = 100, normalized size = 1.82 \[ \frac {2 \, {\left (\frac {i \, \log \left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a^{2}} - \frac {2 i \, \log \left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - i\right )}{a^{2}} + \frac {i \, \log \left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}{a^{2}} + \frac {-i \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + i}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} a^{2}}\right )}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a*cos(d*x+c)+I*a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

2*(I*log(tan(1/2*d*x + 1/2*c) + 1)/a^2 - 2*I*log(tan(1/2*d*x + 1/2*c) - I)/a^2 + I*log(tan(1/2*d*x + 1/2*c) -
1)/a^2 + (-I*tan(1/2*d*x + 1/2*c)^2 + tan(1/2*d*x + 1/2*c) + I)/((tan(1/2*d*x + 1/2*c)^2 - 1)*a^2))/d

________________________________________________________________________________________

maple [A]  time = 0.24, size = 35, normalized size = 0.64 \[ -\frac {2 i \ln \left (\tan \left (d x +c \right )-i\right )}{a^{2} d}-\frac {\tan \left (d x +c \right )}{a^{2} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2/(a*cos(d*x+c)+I*a*sin(d*x+c))^2,x)

[Out]

-2*I/a^2/d*ln(tan(d*x+c)-I)-tan(d*x+c)/a^2/d

________________________________________________________________________________________

maxima [A]  time = 0.33, size = 30, normalized size = 0.55 \[ \frac {-\frac {2 i \, \log \left (\tan \left (d x + c\right ) - i\right )}{a^{2}} - \frac {\tan \left (d x + c\right )}{a^{2}}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a*cos(d*x+c)+I*a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

(-2*I*log(tan(d*x + c) - I)/a^2 - tan(d*x + c)/a^2)/d

________________________________________________________________________________________

mupad [B]  time = 0.78, size = 83, normalized size = 1.51 \[ \frac {2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left (a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-a^2\right )}-\frac {\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-\mathrm {i}\right )\,4{}\mathrm {i}}{a^2\,d}+\frac {\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )\,2{}\mathrm {i}}{a^2\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^2*(a*cos(c + d*x) + a*sin(c + d*x)*1i)^2),x)

[Out]

(2*tan(c/2 + (d*x)/2))/(d*(a^2*tan(c/2 + (d*x)/2)^2 - a^2)) - (log(tan(c/2 + (d*x)/2) - 1i)*4i)/(a^2*d) + (log
(tan(c/2 + (d*x)/2)^2 - 1)*2i)/(a^2*d)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {\sec ^{2}{\left (c + d x \right )}}{- \sin ^{2}{\left (c + d x \right )} + 2 i \sin {\left (c + d x \right )} \cos {\left (c + d x \right )} + \cos ^{2}{\left (c + d x \right )}}\, dx}{a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2/(a*cos(d*x+c)+I*a*sin(d*x+c))**2,x)

[Out]

Integral(sec(c + d*x)**2/(-sin(c + d*x)**2 + 2*I*sin(c + d*x)*cos(c + d*x) + cos(c + d*x)**2), x)/a**2

________________________________________________________________________________________