3.281 \(\int \frac {\cos ^3(x) \sin (x)}{a \cos (x)+b \sin (x)} \, dx\)

Optimal. Leaf size=123 \[ -\frac {b \sin ^3(x)}{3 \left (a^2+b^2\right )}+\frac {b \sin (x)}{a^2+b^2}-\frac {a^2 b \sin (x)}{\left (a^2+b^2\right )^2}-\frac {a \cos ^3(x)}{3 \left (a^2+b^2\right )}-\frac {a b^2 \cos (x)}{\left (a^2+b^2\right )^2}+\frac {a b^3 \tanh ^{-1}\left (\frac {b \cos (x)-a \sin (x)}{\sqrt {a^2+b^2}}\right )}{\left (a^2+b^2\right )^{5/2}} \]

[Out]

a*b^3*arctanh((b*cos(x)-a*sin(x))/(a^2+b^2)^(1/2))/(a^2+b^2)^(5/2)-a*b^2*cos(x)/(a^2+b^2)^2-1/3*a*cos(x)^3/(a^
2+b^2)-a^2*b*sin(x)/(a^2+b^2)^2+b*sin(x)/(a^2+b^2)-1/3*b*sin(x)^3/(a^2+b^2)

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 123, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.444, Rules used = {3109, 2633, 2565, 30, 3100, 2637, 3074, 206} \[ -\frac {b \sin ^3(x)}{3 \left (a^2+b^2\right )}+\frac {b \sin (x)}{a^2+b^2}-\frac {a^2 b \sin (x)}{\left (a^2+b^2\right )^2}-\frac {a \cos ^3(x)}{3 \left (a^2+b^2\right )}-\frac {a b^2 \cos (x)}{\left (a^2+b^2\right )^2}+\frac {a b^3 \tanh ^{-1}\left (\frac {b \cos (x)-a \sin (x)}{\sqrt {a^2+b^2}}\right )}{\left (a^2+b^2\right )^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[x]^3*Sin[x])/(a*Cos[x] + b*Sin[x]),x]

[Out]

(a*b^3*ArcTanh[(b*Cos[x] - a*Sin[x])/Sqrt[a^2 + b^2]])/(a^2 + b^2)^(5/2) - (a*b^2*Cos[x])/(a^2 + b^2)^2 - (a*C
os[x]^3)/(3*(a^2 + b^2)) - (a^2*b*Sin[x])/(a^2 + b^2)^2 + (b*Sin[x])/(a^2 + b^2) - (b*Sin[x]^3)/(3*(a^2 + b^2)
)

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2565

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> -Dist[(a*f)^(-1), Subst[
Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2]
 &&  !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])

Rule 2633

Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[Expand[(1 - x^2)^((n - 1)/2), x], x], x
, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[(n - 1)/2, 0]

Rule 2637

Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3074

Int[(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> -Dist[d^(-1), Subst[Int
[1/(a^2 + b^2 - x^2), x], x, b*Cos[c + d*x] - a*Sin[c + d*x]], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2,
0]

Rule 3100

Int[cos[(c_.) + (d_.)*(x_)]^(m_)/(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)]), x_Symbol] :>
 Simp[(b*Cos[c + d*x]^(m - 1))/(d*(a^2 + b^2)*(m - 1)), x] + (Dist[a/(a^2 + b^2), Int[Cos[c + d*x]^(m - 1), x]
, x] + Dist[b^2/(a^2 + b^2), Int[Cos[c + d*x]^(m - 2)/(a*Cos[c + d*x] + b*Sin[c + d*x]), x], x]) /; FreeQ[{a,
b, c, d}, x] && NeQ[a^2 + b^2, 0] && GtQ[m, 1]

Rule 3109

Int[(cos[(c_.) + (d_.)*(x_)]^(m_.)*sin[(c_.) + (d_.)*(x_)]^(n_.))/(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(
c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[b/(a^2 + b^2), Int[Cos[c + d*x]^m*Sin[c + d*x]^(n - 1), x], x] + (Dist[
a/(a^2 + b^2), Int[Cos[c + d*x]^(m - 1)*Sin[c + d*x]^n, x], x] - Dist[(a*b)/(a^2 + b^2), Int[(Cos[c + d*x]^(m
- 1)*Sin[c + d*x]^(n - 1))/(a*Cos[c + d*x] + b*Sin[c + d*x]), x], x]) /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b
^2, 0] && IGtQ[m, 0] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\cos ^3(x) \sin (x)}{a \cos (x)+b \sin (x)} \, dx &=\frac {a \int \cos ^2(x) \sin (x) \, dx}{a^2+b^2}+\frac {b \int \cos ^3(x) \, dx}{a^2+b^2}-\frac {(a b) \int \frac {\cos ^2(x)}{a \cos (x)+b \sin (x)} \, dx}{a^2+b^2}\\ &=-\frac {a b^2 \cos (x)}{\left (a^2+b^2\right )^2}-\frac {\left (a^2 b\right ) \int \cos (x) \, dx}{\left (a^2+b^2\right )^2}-\frac {\left (a b^3\right ) \int \frac {1}{a \cos (x)+b \sin (x)} \, dx}{\left (a^2+b^2\right )^2}-\frac {a \operatorname {Subst}\left (\int x^2 \, dx,x,\cos (x)\right )}{a^2+b^2}-\frac {b \operatorname {Subst}\left (\int \left (1-x^2\right ) \, dx,x,-\sin (x)\right )}{a^2+b^2}\\ &=-\frac {a b^2 \cos (x)}{\left (a^2+b^2\right )^2}-\frac {a \cos ^3(x)}{3 \left (a^2+b^2\right )}-\frac {a^2 b \sin (x)}{\left (a^2+b^2\right )^2}+\frac {b \sin (x)}{a^2+b^2}-\frac {b \sin ^3(x)}{3 \left (a^2+b^2\right )}+\frac {\left (a b^3\right ) \operatorname {Subst}\left (\int \frac {1}{a^2+b^2-x^2} \, dx,x,b \cos (x)-a \sin (x)\right )}{\left (a^2+b^2\right )^2}\\ &=\frac {a b^3 \tanh ^{-1}\left (\frac {b \cos (x)-a \sin (x)}{\sqrt {a^2+b^2}}\right )}{\left (a^2+b^2\right )^{5/2}}-\frac {a b^2 \cos (x)}{\left (a^2+b^2\right )^2}-\frac {a \cos ^3(x)}{3 \left (a^2+b^2\right )}-\frac {a^2 b \sin (x)}{\left (a^2+b^2\right )^2}+\frac {b \sin (x)}{a^2+b^2}-\frac {b \sin ^3(x)}{3 \left (a^2+b^2\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.02, size = 112, normalized size = 0.91 \[ -\frac {3 a \left (a^2+5 b^2\right ) \cos (x)+a \left (a^2+b^2\right ) \cos (3 x)-2 b \sin (x) \left (\left (a^2+b^2\right ) \cos (2 x)-a^2+5 b^2\right )}{12 \left (a^2+b^2\right )^2}-\frac {2 a b^3 \tanh ^{-1}\left (\frac {a \tan \left (\frac {x}{2}\right )-b}{\sqrt {a^2+b^2}}\right )}{\left (a^2+b^2\right )^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[x]^3*Sin[x])/(a*Cos[x] + b*Sin[x]),x]

[Out]

(-2*a*b^3*ArcTanh[(-b + a*Tan[x/2])/Sqrt[a^2 + b^2]])/(a^2 + b^2)^(5/2) - (3*a*(a^2 + 5*b^2)*Cos[x] + a*(a^2 +
 b^2)*Cos[3*x] - 2*b*(-a^2 + 5*b^2 + (a^2 + b^2)*Cos[2*x])*Sin[x])/(12*(a^2 + b^2)^2)

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 213, normalized size = 1.73 \[ \frac {3 \, \sqrt {a^{2} + b^{2}} a b^{3} \log \left (\frac {2 \, a b \cos \relax (x) \sin \relax (x) + {\left (a^{2} - b^{2}\right )} \cos \relax (x)^{2} - 2 \, a^{2} - b^{2} - 2 \, \sqrt {a^{2} + b^{2}} {\left (b \cos \relax (x) - a \sin \relax (x)\right )}}{2 \, a b \cos \relax (x) \sin \relax (x) + {\left (a^{2} - b^{2}\right )} \cos \relax (x)^{2} + b^{2}}\right ) - 2 \, {\left (a^{5} + 2 \, a^{3} b^{2} + a b^{4}\right )} \cos \relax (x)^{3} - 6 \, {\left (a^{3} b^{2} + a b^{4}\right )} \cos \relax (x) - 2 \, {\left (a^{4} b - a^{2} b^{3} - 2 \, b^{5} - {\left (a^{4} b + 2 \, a^{2} b^{3} + b^{5}\right )} \cos \relax (x)^{2}\right )} \sin \relax (x)}{6 \, {\left (a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(x)^3*sin(x)/(a*cos(x)+b*sin(x)),x, algorithm="fricas")

[Out]

1/6*(3*sqrt(a^2 + b^2)*a*b^3*log((2*a*b*cos(x)*sin(x) + (a^2 - b^2)*cos(x)^2 - 2*a^2 - b^2 - 2*sqrt(a^2 + b^2)
*(b*cos(x) - a*sin(x)))/(2*a*b*cos(x)*sin(x) + (a^2 - b^2)*cos(x)^2 + b^2)) - 2*(a^5 + 2*a^3*b^2 + a*b^4)*cos(
x)^3 - 6*(a^3*b^2 + a*b^4)*cos(x) - 2*(a^4*b - a^2*b^3 - 2*b^5 - (a^4*b + 2*a^2*b^3 + b^5)*cos(x)^2)*sin(x))/(
a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)

________________________________________________________________________________________

giac [A]  time = 8.01, size = 201, normalized size = 1.63 \[ \frac {a b^{3} \log \left (\frac {{\left | 2 \, a \tan \left (\frac {1}{2} \, x\right ) - 2 \, b - 2 \, \sqrt {a^{2} + b^{2}} \right |}}{{\left | 2 \, a \tan \left (\frac {1}{2} \, x\right ) - 2 \, b + 2 \, \sqrt {a^{2} + b^{2}} \right |}}\right )}{{\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt {a^{2} + b^{2}}} + \frac {2 \, {\left (3 \, b^{3} \tan \left (\frac {1}{2} \, x\right )^{5} - 3 \, a^{3} \tan \left (\frac {1}{2} \, x\right )^{4} - 6 \, a b^{2} \tan \left (\frac {1}{2} \, x\right )^{4} - 4 \, a^{2} b \tan \left (\frac {1}{2} \, x\right )^{3} + 2 \, b^{3} \tan \left (\frac {1}{2} \, x\right )^{3} - 6 \, a b^{2} \tan \left (\frac {1}{2} \, x\right )^{2} + 3 \, b^{3} \tan \left (\frac {1}{2} \, x\right ) - a^{3} - 4 \, a b^{2}\right )}}{3 \, {\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} {\left (\tan \left (\frac {1}{2} \, x\right )^{2} + 1\right )}^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(x)^3*sin(x)/(a*cos(x)+b*sin(x)),x, algorithm="giac")

[Out]

a*b^3*log(abs(2*a*tan(1/2*x) - 2*b - 2*sqrt(a^2 + b^2))/abs(2*a*tan(1/2*x) - 2*b + 2*sqrt(a^2 + b^2)))/((a^4 +
 2*a^2*b^2 + b^4)*sqrt(a^2 + b^2)) + 2/3*(3*b^3*tan(1/2*x)^5 - 3*a^3*tan(1/2*x)^4 - 6*a*b^2*tan(1/2*x)^4 - 4*a
^2*b*tan(1/2*x)^3 + 2*b^3*tan(1/2*x)^3 - 6*a*b^2*tan(1/2*x)^2 + 3*b^3*tan(1/2*x) - a^3 - 4*a*b^2)/((a^4 + 2*a^
2*b^2 + b^4)*(tan(1/2*x)^2 + 1)^3)

________________________________________________________________________________________

maple [A]  time = 0.09, size = 170, normalized size = 1.38 \[ -\frac {4 b^{3} a \arctanh \left (\frac {2 a \tan \left (\frac {x}{2}\right )-2 b}{2 \sqrt {a^{2}+b^{2}}}\right )}{\left (2 a^{4}+4 a^{2} b^{2}+2 b^{4}\right ) \sqrt {a^{2}+b^{2}}}-\frac {2 \left (-b^{3} \left (\tan ^{5}\left (\frac {x}{2}\right )\right )+\left (a^{3}+2 a \,b^{2}\right ) \left (\tan ^{4}\left (\frac {x}{2}\right )\right )+\left (\frac {4}{3} a^{2} b -\frac {2}{3} b^{3}\right ) \left (\tan ^{3}\left (\frac {x}{2}\right )\right )+2 a \,b^{2} \left (\tan ^{2}\left (\frac {x}{2}\right )\right )-b^{3} \tan \left (\frac {x}{2}\right )+\frac {a^{3}}{3}+\frac {4 a \,b^{2}}{3}\right )}{\left (a^{4}+2 a^{2} b^{2}+b^{4}\right ) \left (\tan ^{2}\left (\frac {x}{2}\right )+1\right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(x)^3*sin(x)/(a*cos(x)+b*sin(x)),x)

[Out]

-4*b^3*a/(2*a^4+4*a^2*b^2+2*b^4)/(a^2+b^2)^(1/2)*arctanh(1/2*(2*a*tan(1/2*x)-2*b)/(a^2+b^2)^(1/2))-2/(a^4+2*a^
2*b^2+b^4)*(-b^3*tan(1/2*x)^5+(a^3+2*a*b^2)*tan(1/2*x)^4+(4/3*a^2*b-2/3*b^3)*tan(1/2*x)^3+2*a*b^2*tan(1/2*x)^2
-b^3*tan(1/2*x)+1/3*a^3+4/3*a*b^2)/(tan(1/2*x)^2+1)^3

________________________________________________________________________________________

maxima [B]  time = 0.43, size = 281, normalized size = 2.28 \[ \frac {a b^{3} \log \left (\frac {b - \frac {a \sin \relax (x)}{\cos \relax (x) + 1} + \sqrt {a^{2} + b^{2}}}{b - \frac {a \sin \relax (x)}{\cos \relax (x) + 1} - \sqrt {a^{2} + b^{2}}}\right )}{{\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt {a^{2} + b^{2}}} - \frac {2 \, {\left (a^{3} + 4 \, a b^{2} - \frac {3 \, b^{3} \sin \relax (x)}{\cos \relax (x) + 1} + \frac {6 \, a b^{2} \sin \relax (x)^{2}}{{\left (\cos \relax (x) + 1\right )}^{2}} - \frac {3 \, b^{3} \sin \relax (x)^{5}}{{\left (\cos \relax (x) + 1\right )}^{5}} + \frac {2 \, {\left (2 \, a^{2} b - b^{3}\right )} \sin \relax (x)^{3}}{{\left (\cos \relax (x) + 1\right )}^{3}} + \frac {3 \, {\left (a^{3} + 2 \, a b^{2}\right )} \sin \relax (x)^{4}}{{\left (\cos \relax (x) + 1\right )}^{4}}\right )}}{3 \, {\left (a^{4} + 2 \, a^{2} b^{2} + b^{4} + \frac {3 \, {\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} \sin \relax (x)^{2}}{{\left (\cos \relax (x) + 1\right )}^{2}} + \frac {3 \, {\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} \sin \relax (x)^{4}}{{\left (\cos \relax (x) + 1\right )}^{4}} + \frac {{\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} \sin \relax (x)^{6}}{{\left (\cos \relax (x) + 1\right )}^{6}}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(x)^3*sin(x)/(a*cos(x)+b*sin(x)),x, algorithm="maxima")

[Out]

a*b^3*log((b - a*sin(x)/(cos(x) + 1) + sqrt(a^2 + b^2))/(b - a*sin(x)/(cos(x) + 1) - sqrt(a^2 + b^2)))/((a^4 +
 2*a^2*b^2 + b^4)*sqrt(a^2 + b^2)) - 2/3*(a^3 + 4*a*b^2 - 3*b^3*sin(x)/(cos(x) + 1) + 6*a*b^2*sin(x)^2/(cos(x)
 + 1)^2 - 3*b^3*sin(x)^5/(cos(x) + 1)^5 + 2*(2*a^2*b - b^3)*sin(x)^3/(cos(x) + 1)^3 + 3*(a^3 + 2*a*b^2)*sin(x)
^4/(cos(x) + 1)^4)/(a^4 + 2*a^2*b^2 + b^4 + 3*(a^4 + 2*a^2*b^2 + b^4)*sin(x)^2/(cos(x) + 1)^2 + 3*(a^4 + 2*a^2
*b^2 + b^4)*sin(x)^4/(cos(x) + 1)^4 + (a^4 + 2*a^2*b^2 + b^4)*sin(x)^6/(cos(x) + 1)^6)

________________________________________________________________________________________

mupad [B]  time = 1.26, size = 291, normalized size = 2.37 \[ \frac {2\,a\,b^3\,\mathrm {atanh}\left (\frac {2\,a^4\,b+2\,b^5+4\,a^2\,b^3-2\,a\,\mathrm {tan}\left (\frac {x}{2}\right )\,\left (a^4+2\,a^2\,b^2+b^4\right )}{2\,{\left (a^2+b^2\right )}^{5/2}}\right )}{{\left (a^2+b^2\right )}^{5/2}}-\frac {\frac {2\,\left (a^3+4\,a\,b^2\right )}{3\,\left (a^4+2\,a^2\,b^2+b^4\right )}+\frac {4\,{\mathrm {tan}\left (\frac {x}{2}\right )}^3\,\left (2\,a^2\,b-b^3\right )}{3\,\left (a^4+2\,a^2\,b^2+b^4\right )}-\frac {2\,b^3\,\mathrm {tan}\left (\frac {x}{2}\right )}{a^4+2\,a^2\,b^2+b^4}+\frac {2\,{\mathrm {tan}\left (\frac {x}{2}\right )}^4\,\left (a^3+2\,a\,b^2\right )}{a^4+2\,a^2\,b^2+b^4}-\frac {2\,b^3\,{\mathrm {tan}\left (\frac {x}{2}\right )}^5}{a^4+2\,a^2\,b^2+b^4}+\frac {4\,a\,b^2\,{\mathrm {tan}\left (\frac {x}{2}\right )}^2}{a^4+2\,a^2\,b^2+b^4}}{{\mathrm {tan}\left (\frac {x}{2}\right )}^6+3\,{\mathrm {tan}\left (\frac {x}{2}\right )}^4+3\,{\mathrm {tan}\left (\frac {x}{2}\right )}^2+1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(x)^3*sin(x))/(a*cos(x) + b*sin(x)),x)

[Out]

(2*a*b^3*atanh((2*a^4*b + 2*b^5 + 4*a^2*b^3 - 2*a*tan(x/2)*(a^4 + b^4 + 2*a^2*b^2))/(2*(a^2 + b^2)^(5/2))))/(a
^2 + b^2)^(5/2) - ((2*(4*a*b^2 + a^3))/(3*(a^4 + b^4 + 2*a^2*b^2)) + (4*tan(x/2)^3*(2*a^2*b - b^3))/(3*(a^4 +
b^4 + 2*a^2*b^2)) - (2*b^3*tan(x/2))/(a^4 + b^4 + 2*a^2*b^2) + (2*tan(x/2)^4*(2*a*b^2 + a^3))/(a^4 + b^4 + 2*a
^2*b^2) - (2*b^3*tan(x/2)^5)/(a^4 + b^4 + 2*a^2*b^2) + (4*a*b^2*tan(x/2)^2)/(a^4 + b^4 + 2*a^2*b^2))/(3*tan(x/
2)^2 + 3*tan(x/2)^4 + tan(x/2)^6 + 1)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(x)**3*sin(x)/(a*cos(x)+b*sin(x)),x)

[Out]

Timed out

________________________________________________________________________________________