3.41 \(\int \sec ^6(c+d x) (a \cos (c+d x)+b \sin (c+d x)) \, dx\)

Optimal. Leaf size=74 \[ \frac {3 a \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac {a \tan (c+d x) \sec ^3(c+d x)}{4 d}+\frac {3 a \tan (c+d x) \sec (c+d x)}{8 d}+\frac {b \sec ^5(c+d x)}{5 d} \]

[Out]

3/8*a*arctanh(sin(d*x+c))/d+1/5*b*sec(d*x+c)^5/d+3/8*a*sec(d*x+c)*tan(d*x+c)/d+1/4*a*sec(d*x+c)^3*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 74, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {3090, 3768, 3770, 2606, 30} \[ \frac {3 a \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac {a \tan (c+d x) \sec ^3(c+d x)}{4 d}+\frac {3 a \tan (c+d x) \sec (c+d x)}{8 d}+\frac {b \sec ^5(c+d x)}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^6*(a*Cos[c + d*x] + b*Sin[c + d*x]),x]

[Out]

(3*a*ArcTanh[Sin[c + d*x]])/(8*d) + (b*Sec[c + d*x]^5)/(5*d) + (3*a*Sec[c + d*x]*Tan[c + d*x])/(8*d) + (a*Sec[
c + d*x]^3*Tan[c + d*x])/(4*d)

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2606

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a/f, Subst[
Int[(a*x)^(m - 1)*(-1 + x^2)^((n - 1)/2), x], x, Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n -
1)/2] &&  !(IntegerQ[m/2] && LtQ[0, m, n + 1])

Rule 3090

Int[cos[(c_.) + (d_.)*(x_)]^(m_.)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_.), x_Sym
bol] :> Int[ExpandTrig[cos[c + d*x]^m*(a*cos[c + d*x] + b*sin[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d}, x] &&
 IntegerQ[m] && IGtQ[n, 0]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \sec ^6(c+d x) (a \cos (c+d x)+b \sin (c+d x)) \, dx &=\int \left (a \sec ^5(c+d x)+b \sec ^5(c+d x) \tan (c+d x)\right ) \, dx\\ &=a \int \sec ^5(c+d x) \, dx+b \int \sec ^5(c+d x) \tan (c+d x) \, dx\\ &=\frac {a \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {1}{4} (3 a) \int \sec ^3(c+d x) \, dx+\frac {b \operatorname {Subst}\left (\int x^4 \, dx,x,\sec (c+d x)\right )}{d}\\ &=\frac {b \sec ^5(c+d x)}{5 d}+\frac {3 a \sec (c+d x) \tan (c+d x)}{8 d}+\frac {a \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {1}{8} (3 a) \int \sec (c+d x) \, dx\\ &=\frac {3 a \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac {b \sec ^5(c+d x)}{5 d}+\frac {3 a \sec (c+d x) \tan (c+d x)}{8 d}+\frac {a \sec ^3(c+d x) \tan (c+d x)}{4 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.21, size = 68, normalized size = 0.92 \[ \frac {a \tan (c+d x) \sec ^3(c+d x)}{4 d}+\frac {3 a \left (\tanh ^{-1}(\sin (c+d x))+\tan (c+d x) \sec (c+d x)\right )}{8 d}+\frac {b \sec ^5(c+d x)}{5 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^6*(a*Cos[c + d*x] + b*Sin[c + d*x]),x]

[Out]

(b*Sec[c + d*x]^5)/(5*d) + (a*Sec[c + d*x]^3*Tan[c + d*x])/(4*d) + (3*a*(ArcTanh[Sin[c + d*x]] + Sec[c + d*x]*
Tan[c + d*x]))/(8*d)

________________________________________________________________________________________

fricas [A]  time = 0.94, size = 88, normalized size = 1.19 \[ \frac {15 \, a \cos \left (d x + c\right )^{5} \log \left (\sin \left (d x + c\right ) + 1\right ) - 15 \, a \cos \left (d x + c\right )^{5} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 10 \, {\left (3 \, a \cos \left (d x + c\right )^{3} + 2 \, a \cos \left (d x + c\right )\right )} \sin \left (d x + c\right ) + 16 \, b}{80 \, d \cos \left (d x + c\right )^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^6*(a*cos(d*x+c)+b*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/80*(15*a*cos(d*x + c)^5*log(sin(d*x + c) + 1) - 15*a*cos(d*x + c)^5*log(-sin(d*x + c) + 1) + 10*(3*a*cos(d*x
 + c)^3 + 2*a*cos(d*x + c))*sin(d*x + c) + 16*b)/(d*cos(d*x + c)^5)

________________________________________________________________________________________

giac [B]  time = 4.69, size = 141, normalized size = 1.91 \[ \frac {15 \, a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 15 \, a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + \frac {2 \, {\left (25 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{9} - 40 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{8} - 10 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 80 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 10 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 25 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 8 \, b\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{5}}}{40 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^6*(a*cos(d*x+c)+b*sin(d*x+c)),x, algorithm="giac")

[Out]

1/40*(15*a*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 15*a*log(abs(tan(1/2*d*x + 1/2*c) - 1)) + 2*(25*a*tan(1/2*d*x
+ 1/2*c)^9 - 40*b*tan(1/2*d*x + 1/2*c)^8 - 10*a*tan(1/2*d*x + 1/2*c)^7 - 80*b*tan(1/2*d*x + 1/2*c)^4 + 10*a*ta
n(1/2*d*x + 1/2*c)^3 - 25*a*tan(1/2*d*x + 1/2*c) - 8*b)/(tan(1/2*d*x + 1/2*c)^2 - 1)^5)/d

________________________________________________________________________________________

maple [A]  time = 11.31, size = 74, normalized size = 1.00 \[ \frac {a \left (\sec ^{3}\left (d x +c \right )\right ) \tan \left (d x +c \right )}{4 d}+\frac {3 a \sec \left (d x +c \right ) \tan \left (d x +c \right )}{8 d}+\frac {3 a \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8 d}+\frac {b}{5 d \cos \left (d x +c \right )^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^6*(a*cos(d*x+c)+b*sin(d*x+c)),x)

[Out]

1/4*a*sec(d*x+c)^3*tan(d*x+c)/d+3/8*a*sec(d*x+c)*tan(d*x+c)/d+3/8/d*a*ln(sec(d*x+c)+tan(d*x+c))+1/5/d*b/cos(d*
x+c)^5

________________________________________________________________________________________

maxima [A]  time = 0.33, size = 86, normalized size = 1.16 \[ -\frac {5 \, a {\left (\frac {2 \, {\left (3 \, \sin \left (d x + c\right )^{3} - 5 \, \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - 3 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - \frac {16 \, b}{\cos \left (d x + c\right )^{5}}}{80 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^6*(a*cos(d*x+c)+b*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/80*(5*a*(2*(3*sin(d*x + c)^3 - 5*sin(d*x + c))/(sin(d*x + c)^4 - 2*sin(d*x + c)^2 + 1) - 3*log(sin(d*x + c)
 + 1) + 3*log(sin(d*x + c) - 1)) - 16*b/cos(d*x + c)^5)/d

________________________________________________________________________________________

mupad [B]  time = 4.12, size = 175, normalized size = 2.36 \[ \frac {3\,a\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{4\,d}-\frac {-\frac {5\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9}{4}+2\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+\frac {a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{2}+4\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-\frac {a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{2}+\frac {5\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{4}+\frac {2\,b}{5}}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}-5\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+10\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-10\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+5\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*cos(c + d*x) + b*sin(c + d*x))/cos(c + d*x)^6,x)

[Out]

(3*a*atanh(tan(c/2 + (d*x)/2)))/(4*d) - ((2*b)/5 + (5*a*tan(c/2 + (d*x)/2))/4 - (a*tan(c/2 + (d*x)/2)^3)/2 + (
a*tan(c/2 + (d*x)/2)^7)/2 - (5*a*tan(c/2 + (d*x)/2)^9)/4 + 4*b*tan(c/2 + (d*x)/2)^4 + 2*b*tan(c/2 + (d*x)/2)^8
)/(d*(5*tan(c/2 + (d*x)/2)^2 - 10*tan(c/2 + (d*x)/2)^4 + 10*tan(c/2 + (d*x)/2)^6 - 5*tan(c/2 + (d*x)/2)^8 + ta
n(c/2 + (d*x)/2)^10 - 1))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**6*(a*cos(d*x+c)+b*sin(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________