3.234 \(\int (a \cos (c+d x)+b \sin (c+d x))^{3/2} \, dx\)

Optimal. Leaf size=131 \[ \frac {2 \left (a^2+b^2\right ) \sqrt {\frac {a \cos (c+d x)+b \sin (c+d x)}{\sqrt {a^2+b^2}}} F\left (\left .\frac {1}{2} \left (c+d x-\tan ^{-1}(a,b)\right )\right |2\right )}{3 d \sqrt {a \cos (c+d x)+b \sin (c+d x)}}-\frac {2 (b \cos (c+d x)-a \sin (c+d x)) \sqrt {a \cos (c+d x)+b \sin (c+d x)}}{3 d} \]

[Out]

-2/3*(b*cos(d*x+c)-a*sin(d*x+c))*(a*cos(d*x+c)+b*sin(d*x+c))^(1/2)/d+2/3*(a^2+b^2)*(cos(1/2*c+1/2*d*x-1/2*arct
an(a,b))^2)^(1/2)/cos(1/2*c+1/2*d*x-1/2*arctan(a,b))*EllipticF(sin(1/2*c+1/2*d*x-1/2*arctan(a,b)),2^(1/2))*((a
*cos(d*x+c)+b*sin(d*x+c))/(a^2+b^2)^(1/2))^(1/2)/d/(a*cos(d*x+c)+b*sin(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 131, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3073, 3078, 2641} \[ \frac {2 \left (a^2+b^2\right ) \sqrt {\frac {a \cos (c+d x)+b \sin (c+d x)}{\sqrt {a^2+b^2}}} F\left (\left .\frac {1}{2} \left (c+d x-\tan ^{-1}(a,b)\right )\right |2\right )}{3 d \sqrt {a \cos (c+d x)+b \sin (c+d x)}}-\frac {2 (b \cos (c+d x)-a \sin (c+d x)) \sqrt {a \cos (c+d x)+b \sin (c+d x)}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[(a*Cos[c + d*x] + b*Sin[c + d*x])^(3/2),x]

[Out]

(-2*(b*Cos[c + d*x] - a*Sin[c + d*x])*Sqrt[a*Cos[c + d*x] + b*Sin[c + d*x]])/(3*d) + (2*(a^2 + b^2)*EllipticF[
(c + d*x - ArcTan[a, b])/2, 2]*Sqrt[(a*Cos[c + d*x] + b*Sin[c + d*x])/Sqrt[a^2 + b^2]])/(3*d*Sqrt[a*Cos[c + d*
x] + b*Sin[c + d*x]])

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3073

Int[(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[((b*Cos[c + d*x]
- a*Sin[c + d*x])*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 1))/(d*n), x] + Dist[((n - 1)*(a^2 + b^2))/n, Int[(a*
Cos[c + d*x] + b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] &&  !IntegerQ[(n
 - 1)/2] && GtQ[n, 1]

Rule 3078

Int[(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(a*Cos[c + d*x] +
b*Sin[c + d*x])^n/((a*Cos[c + d*x] + b*Sin[c + d*x])/Sqrt[a^2 + b^2])^n, Int[Cos[c + d*x - ArcTan[a, b]]^n, x]
, x] /; FreeQ[{a, b, c, d, n}, x] &&  !(GeQ[n, 1] || LeQ[n, -1]) &&  !(GtQ[a^2 + b^2, 0] || EqQ[a^2 + b^2, 0])

Rubi steps

\begin {align*} \int (a \cos (c+d x)+b \sin (c+d x))^{3/2} \, dx &=-\frac {2 (b \cos (c+d x)-a \sin (c+d x)) \sqrt {a \cos (c+d x)+b \sin (c+d x)}}{3 d}+\frac {1}{3} \left (a^2+b^2\right ) \int \frac {1}{\sqrt {a \cos (c+d x)+b \sin (c+d x)}} \, dx\\ &=-\frac {2 (b \cos (c+d x)-a \sin (c+d x)) \sqrt {a \cos (c+d x)+b \sin (c+d x)}}{3 d}+\frac {\left (\left (a^2+b^2\right ) \sqrt {\frac {a \cos (c+d x)+b \sin (c+d x)}{\sqrt {a^2+b^2}}}\right ) \int \frac {1}{\sqrt {\cos \left (c+d x-\tan ^{-1}(a,b)\right )}} \, dx}{3 \sqrt {a \cos (c+d x)+b \sin (c+d x)}}\\ &=-\frac {2 (b \cos (c+d x)-a \sin (c+d x)) \sqrt {a \cos (c+d x)+b \sin (c+d x)}}{3 d}+\frac {2 \left (a^2+b^2\right ) F\left (\left .\frac {1}{2} \left (c+d x-\tan ^{-1}(a,b)\right )\right |2\right ) \sqrt {\frac {a \cos (c+d x)+b \sin (c+d x)}{\sqrt {a^2+b^2}}}}{3 d \sqrt {a \cos (c+d x)+b \sin (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.29, size = 143, normalized size = 1.09 \[ \frac {2 \left (\frac {\left (a^2+b^2\right ) \tan \left (\tan ^{-1}\left (\frac {a}{b}\right )+c+d x\right ) \sqrt {\cos ^2\left (\tan ^{-1}\left (\frac {a}{b}\right )+c+d x\right )} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2\left (c+d x+\tan ^{-1}\left (\frac {a}{b}\right )\right )\right )}{\sqrt {b \sqrt {\frac {a^2}{b^2}+1} \sin \left (\tan ^{-1}\left (\frac {a}{b}\right )+c+d x\right )}}+\sqrt {a \cos (c+d x)+b \sin (c+d x)} (a \sin (c+d x)-b \cos (c+d x))\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*Cos[c + d*x] + b*Sin[c + d*x])^(3/2),x]

[Out]

(2*((-(b*Cos[c + d*x]) + a*Sin[c + d*x])*Sqrt[a*Cos[c + d*x] + b*Sin[c + d*x]] + ((a^2 + b^2)*Sqrt[Cos[c + d*x
 + ArcTan[a/b]]^2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[c + d*x + ArcTan[a/b]]^2]*Tan[c + d*x + ArcTan[a/b
]])/Sqrt[Sqrt[1 + a^2/b^2]*b*Sin[c + d*x + ArcTan[a/b]]]))/(3*d)

________________________________________________________________________________________

fricas [F]  time = 0.81, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (a \cos \left (d x + c\right ) + b \sin \left (d x + c\right )\right )}^{\frac {3}{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*cos(d*x+c)+b*sin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral((a*cos(d*x + c) + b*sin(d*x + c))^(3/2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (a \cos \left (d x + c\right ) + b \sin \left (d x + c\right )\right )}^{\frac {3}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*cos(d*x+c)+b*sin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + b*sin(d*x + c))^(3/2), x)

________________________________________________________________________________________

maple [A]  time = 0.37, size = 163, normalized size = 1.24 \[ \frac {\left (a^{2}+b^{2}\right ) \left (\sqrt {1+\sin \left (d x +c -\arctan \left (-a , b\right )\right )}\, \sqrt {-2 \sin \left (d x +c -\arctan \left (-a , b\right )\right )+2}\, \sqrt {-\sin \left (d x +c -\arctan \left (-a , b\right )\right )}\, \EllipticF \left (\sqrt {1+\sin \left (d x +c -\arctan \left (-a , b\right )\right )}, \frac {\sqrt {2}}{2}\right )+2 \left (\sin ^{3}\left (d x +c -\arctan \left (-a , b\right )\right )\right )-2 \sin \left (d x +c -\arctan \left (-a , b\right )\right )\right )}{3 \cos \left (d x +c -\arctan \left (-a , b\right )\right ) \sqrt {\sin \left (d x +c -\arctan \left (-a , b\right )\right ) \sqrt {a^{2}+b^{2}}}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*cos(d*x+c)+b*sin(d*x+c))^(3/2),x)

[Out]

1/3*(a^2+b^2)*((1+sin(d*x+c-arctan(-a,b)))^(1/2)*(-2*sin(d*x+c-arctan(-a,b))+2)^(1/2)*(-sin(d*x+c-arctan(-a,b)
))^(1/2)*EllipticF((1+sin(d*x+c-arctan(-a,b)))^(1/2),1/2*2^(1/2))+2*sin(d*x+c-arctan(-a,b))^3-2*sin(d*x+c-arct
an(-a,b)))/cos(d*x+c-arctan(-a,b))/(sin(d*x+c-arctan(-a,b))*(a^2+b^2)^(1/2))^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (a \cos \left (d x + c\right ) + b \sin \left (d x + c\right )\right )}^{\frac {3}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*cos(d*x+c)+b*sin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((a*cos(d*x + c) + b*sin(d*x + c))^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (a\,\cos \left (c+d\,x\right )+b\,\sin \left (c+d\,x\right )\right )}^{3/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*cos(c + d*x) + b*sin(c + d*x))^(3/2),x)

[Out]

int((a*cos(c + d*x) + b*sin(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a \cos {\left (c + d x \right )} + b \sin {\left (c + d x \right )}\right )^{\frac {3}{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*cos(d*x+c)+b*sin(d*x+c))**(3/2),x)

[Out]

Integral((a*cos(c + d*x) + b*sin(c + d*x))**(3/2), x)

________________________________________________________________________________________