3.357 \(\int (\sqrt {b^2+c^2}+b \cos (d+e x)+c \sin (d+e x))^2 \, dx\)

Optimal. Leaf size=116 \[ \frac {3 b \sqrt {b^2+c^2} \sin (d+e x)}{2 e}-\frac {3 c \sqrt {b^2+c^2} \cos (d+e x)}{2 e}-\frac {(c \cos (d+e x)-b \sin (d+e x)) \left (\sqrt {b^2+c^2}+b \cos (d+e x)+c \sin (d+e x)\right )}{2 e}+\frac {3}{2} x \left (b^2+c^2\right ) \]

[Out]

3/2*(b^2+c^2)*x-3/2*c*cos(e*x+d)*(b^2+c^2)^(1/2)/e+3/2*b*sin(e*x+d)*(b^2+c^2)^(1/2)/e-1/2*(c*cos(e*x+d)-b*sin(
e*x+d))*(b*cos(e*x+d)+c*sin(e*x+d)+(b^2+c^2)^(1/2))/e

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {3113, 2637, 2638} \[ \frac {3 b \sqrt {b^2+c^2} \sin (d+e x)}{2 e}-\frac {3 c \sqrt {b^2+c^2} \cos (d+e x)}{2 e}-\frac {(c \cos (d+e x)-b \sin (d+e x)) \left (\sqrt {b^2+c^2}+b \cos (d+e x)+c \sin (d+e x)\right )}{2 e}+\frac {3}{2} x \left (b^2+c^2\right ) \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[b^2 + c^2] + b*Cos[d + e*x] + c*Sin[d + e*x])^2,x]

[Out]

(3*(b^2 + c^2)*x)/2 - (3*c*Sqrt[b^2 + c^2]*Cos[d + e*x])/(2*e) + (3*b*Sqrt[b^2 + c^2]*Sin[d + e*x])/(2*e) - ((
c*Cos[d + e*x] - b*Sin[d + e*x])*(Sqrt[b^2 + c^2] + b*Cos[d + e*x] + c*Sin[d + e*x]))/(2*e)

Rule 2637

Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 2638

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3113

Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_), x_Symbol] :> -Simp[((c*Cos[d
+ e*x] - b*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n - 1))/(e*n), x] + Dist[(a*(2*n - 1))/n, Int[
(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[a^2 - b^2 - c^2, 0]
&& GtQ[n, 0]

Rubi steps

\begin {align*} \int \left (\sqrt {b^2+c^2}+b \cos (d+e x)+c \sin (d+e x)\right )^2 \, dx &=-\frac {(c \cos (d+e x)-b \sin (d+e x)) \left (\sqrt {b^2+c^2}+b \cos (d+e x)+c \sin (d+e x)\right )}{2 e}+\frac {1}{2} \left (3 \sqrt {b^2+c^2}\right ) \int \left (\sqrt {b^2+c^2}+b \cos (d+e x)+c \sin (d+e x)\right ) \, dx\\ &=\frac {3}{2} \left (b^2+c^2\right ) x-\frac {(c \cos (d+e x)-b \sin (d+e x)) \left (\sqrt {b^2+c^2}+b \cos (d+e x)+c \sin (d+e x)\right )}{2 e}+\frac {1}{2} \left (3 b \sqrt {b^2+c^2}\right ) \int \cos (d+e x) \, dx+\frac {1}{2} \left (3 c \sqrt {b^2+c^2}\right ) \int \sin (d+e x) \, dx\\ &=\frac {3}{2} \left (b^2+c^2\right ) x-\frac {3 c \sqrt {b^2+c^2} \cos (d+e x)}{2 e}+\frac {3 b \sqrt {b^2+c^2} \sin (d+e x)}{2 e}-\frac {(c \cos (d+e x)-b \sin (d+e x)) \left (\sqrt {b^2+c^2}+b \cos (d+e x)+c \sin (d+e x)\right )}{2 e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.21, size = 111, normalized size = 0.96 \[ \frac {8 b \sqrt {b^2+c^2} \sin (d+e x)-8 c \sqrt {b^2+c^2} \cos (d+e x)+b^2 \sin (2 (d+e x))+6 b^2 d+6 b^2 e x-2 b c \cos (2 (d+e x))-c^2 \sin (2 (d+e x))+6 c^2 d+6 c^2 e x}{4 e} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[b^2 + c^2] + b*Cos[d + e*x] + c*Sin[d + e*x])^2,x]

[Out]

(6*b^2*d + 6*c^2*d + 6*b^2*e*x + 6*c^2*e*x - 8*c*Sqrt[b^2 + c^2]*Cos[d + e*x] - 2*b*c*Cos[2*(d + e*x)] + 8*b*S
qrt[b^2 + c^2]*Sin[d + e*x] + b^2*Sin[2*(d + e*x)] - c^2*Sin[2*(d + e*x)])/(4*e)

________________________________________________________________________________________

fricas [A]  time = 0.94, size = 81, normalized size = 0.70 \[ -\frac {2 \, b c \cos \left (e x + d\right )^{2} - 3 \, {\left (b^{2} + c^{2}\right )} e x - {\left (b^{2} - c^{2}\right )} \cos \left (e x + d\right ) \sin \left (e x + d\right ) + 4 \, \sqrt {b^{2} + c^{2}} {\left (c \cos \left (e x + d\right ) - b \sin \left (e x + d\right )\right )}}{2 \, e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(e*x+d)+c*sin(e*x+d)+(b^2+c^2)^(1/2))^2,x, algorithm="fricas")

[Out]

-1/2*(2*b*c*cos(e*x + d)^2 - 3*(b^2 + c^2)*e*x - (b^2 - c^2)*cos(e*x + d)*sin(e*x + d) + 4*sqrt(b^2 + c^2)*(c*
cos(e*x + d) - b*sin(e*x + d)))/e

________________________________________________________________________________________

giac [A]  time = 0.17, size = 92, normalized size = 0.79 \[ -\frac {1}{2} \, b c \cos \left (2 \, x e + 2 \, d\right ) e^{\left (-1\right )} - 2 \, \sqrt {b^{2} + c^{2}} c \cos \left (x e + d\right ) e^{\left (-1\right )} + 2 \, \sqrt {b^{2} + c^{2}} b e^{\left (-1\right )} \sin \left (x e + d\right ) + \frac {1}{4} \, {\left (b^{2} - c^{2}\right )} e^{\left (-1\right )} \sin \left (2 \, x e + 2 \, d\right ) + \frac {3}{2} \, {\left (b^{2} + c^{2}\right )} x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(e*x+d)+c*sin(e*x+d)+(b^2+c^2)^(1/2))^2,x, algorithm="giac")

[Out]

-1/2*b*c*cos(2*x*e + 2*d)*e^(-1) - 2*sqrt(b^2 + c^2)*c*cos(x*e + d)*e^(-1) + 2*sqrt(b^2 + c^2)*b*e^(-1)*sin(x*
e + d) + 1/4*(b^2 - c^2)*e^(-1)*sin(2*x*e + 2*d) + 3/2*(b^2 + c^2)*x

________________________________________________________________________________________

maple [A]  time = 0.22, size = 124, normalized size = 1.07 \[ \frac {b^{2} \left (\frac {\sin \left (e x +d \right ) \cos \left (e x +d \right )}{2}+\frac {e x}{2}+\frac {d}{2}\right )-\left (\cos ^{2}\left (e x +d \right )\right ) b c +c^{2} \left (-\frac {\sin \left (e x +d \right ) \cos \left (e x +d \right )}{2}+\frac {e x}{2}+\frac {d}{2}\right )+2 \sqrt {b^{2}+c^{2}}\, b \sin \left (e x +d \right )-2 \sqrt {b^{2}+c^{2}}\, c \cos \left (e x +d \right )+b^{2} \left (e x +d \right )+c^{2} \left (e x +d \right )}{e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*cos(e*x+d)+c*sin(e*x+d)+(b^2+c^2)^(1/2))^2,x)

[Out]

1/e*(b^2*(1/2*sin(e*x+d)*cos(e*x+d)+1/2*e*x+1/2*d)-cos(e*x+d)^2*b*c+c^2*(-1/2*sin(e*x+d)*cos(e*x+d)+1/2*e*x+1/
2*d)+2*(b^2+c^2)^(1/2)*b*sin(e*x+d)-2*(b^2+c^2)^(1/2)*c*cos(e*x+d)+b^2*(e*x+d)+c^2*(e*x+d))

________________________________________________________________________________________

maxima [A]  time = 0.31, size = 113, normalized size = 0.97 \[ b^{2} x + c^{2} x - \frac {b c \cos \left (e x + d\right )^{2}}{e} + \frac {{\left (2 \, e x + 2 \, d + \sin \left (2 \, e x + 2 \, d\right )\right )} b^{2}}{4 \, e} + \frac {{\left (2 \, e x + 2 \, d - \sin \left (2 \, e x + 2 \, d\right )\right )} c^{2}}{4 \, e} - 2 \, \sqrt {b^{2} + c^{2}} {\left (\frac {c \cos \left (e x + d\right )}{e} - \frac {b \sin \left (e x + d\right )}{e}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(e*x+d)+c*sin(e*x+d)+(b^2+c^2)^(1/2))^2,x, algorithm="maxima")

[Out]

b^2*x + c^2*x - b*c*cos(e*x + d)^2/e + 1/4*(2*e*x + 2*d + sin(2*e*x + 2*d))*b^2/e + 1/4*(2*e*x + 2*d - sin(2*e
*x + 2*d))*c^2/e - 2*sqrt(b^2 + c^2)*(c*cos(e*x + d)/e - b*sin(e*x + d)/e)

________________________________________________________________________________________

mupad [B]  time = 3.08, size = 100, normalized size = 0.86 \[ \frac {b^2\,\sin \left (2\,d+2\,e\,x\right )-c^2\,\sin \left (2\,d+2\,e\,x\right )+16\,c\,{\sin \left (\frac {d}{2}+\frac {e\,x}{2}\right )}^2\,\sqrt {b^2+c^2}+8\,b\,\sin \left (d+e\,x\right )\,\sqrt {b^2+c^2}+4\,b\,c\,{\sin \left (d+e\,x\right )}^2+6\,b^2\,e\,x+6\,c^2\,e\,x}{4\,e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*cos(d + e*x) + c*sin(d + e*x) + (b^2 + c^2)^(1/2))^2,x)

[Out]

(b^2*sin(2*d + 2*e*x) - c^2*sin(2*d + 2*e*x) + 16*c*sin(d/2 + (e*x)/2)^2*(b^2 + c^2)^(1/2) + 8*b*sin(d + e*x)*
(b^2 + c^2)^(1/2) + 4*b*c*sin(d + e*x)^2 + 6*b^2*e*x + 6*c^2*e*x)/(4*e)

________________________________________________________________________________________

sympy [A]  time = 0.45, size = 192, normalized size = 1.66 \[ \begin {cases} \frac {b^{2} x \sin ^{2}{\left (d + e x \right )}}{2} + \frac {b^{2} x \cos ^{2}{\left (d + e x \right )}}{2} + b^{2} x + \frac {b^{2} \sin {\left (d + e x \right )} \cos {\left (d + e x \right )}}{2 e} - \frac {b c \cos ^{2}{\left (d + e x \right )}}{e} + \frac {2 b \sqrt {b^{2} + c^{2}} \sin {\left (d + e x \right )}}{e} + \frac {c^{2} x \sin ^{2}{\left (d + e x \right )}}{2} + \frac {c^{2} x \cos ^{2}{\left (d + e x \right )}}{2} + c^{2} x - \frac {c^{2} \sin {\left (d + e x \right )} \cos {\left (d + e x \right )}}{2 e} - \frac {2 c \sqrt {b^{2} + c^{2}} \cos {\left (d + e x \right )}}{e} & \text {for}\: e \neq 0 \\x \left (b \cos {\relax (d )} + c \sin {\relax (d )} + \sqrt {b^{2} + c^{2}}\right )^{2} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(e*x+d)+c*sin(e*x+d)+(b**2+c**2)**(1/2))**2,x)

[Out]

Piecewise((b**2*x*sin(d + e*x)**2/2 + b**2*x*cos(d + e*x)**2/2 + b**2*x + b**2*sin(d + e*x)*cos(d + e*x)/(2*e)
 - b*c*cos(d + e*x)**2/e + 2*b*sqrt(b**2 + c**2)*sin(d + e*x)/e + c**2*x*sin(d + e*x)**2/2 + c**2*x*cos(d + e*
x)**2/2 + c**2*x - c**2*sin(d + e*x)*cos(d + e*x)/(2*e) - 2*c*sqrt(b**2 + c**2)*cos(d + e*x)/e, Ne(e, 0)), (x*
(b*cos(d) + c*sin(d) + sqrt(b**2 + c**2))**2, True))

________________________________________________________________________________________