3.370 \(\int \frac {1}{2 a+2 a \cos (d+e x)+2 a \sin (d+e x)} \, dx\)

Optimal. Leaf size=23 \[ \frac {\log \left (\tan \left (\frac {1}{2} (d+e x)\right )+1\right )}{2 a e} \]

[Out]

1/2*ln(1+tan(1/2*e*x+1/2*d))/a/e

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {3124, 31} \[ \frac {\log \left (\tan \left (\frac {1}{2} (d+e x)\right )+1\right )}{2 a e} \]

Antiderivative was successfully verified.

[In]

Int[(2*a + 2*a*Cos[d + e*x] + 2*a*Sin[d + e*x])^(-1),x]

[Out]

Log[1 + Tan[(d + e*x)/2]]/(2*a*e)

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 3124

Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(-1), x_Symbol] :> Module[{f = Free
Factors[Tan[(d + e*x)/2], x]}, Dist[(2*f)/e, Subst[Int[1/(a + b + 2*c*f*x + (a - b)*f^2*x^2), x], x, Tan[(d +
e*x)/2]/f], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0]

Rubi steps

\begin {align*} \int \frac {1}{2 a+2 a \cos (d+e x)+2 a \sin (d+e x)} \, dx &=\frac {2 \operatorname {Subst}\left (\int \frac {1}{4 a+4 a x} \, dx,x,\tan \left (\frac {1}{2} (d+e x)\right )\right )}{e}\\ &=\frac {\log \left (1+\tan \left (\frac {1}{2} (d+e x)\right )\right )}{2 a e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.03, size = 50, normalized size = 2.17 \[ \frac {\frac {\log \left (\sin \left (\frac {1}{2} (d+e x)\right )+\cos \left (\frac {1}{2} (d+e x)\right )\right )}{e}-\frac {\log \left (\cos \left (\frac {1}{2} (d+e x)\right )\right )}{e}}{2 a} \]

Antiderivative was successfully verified.

[In]

Integrate[(2*a + 2*a*Cos[d + e*x] + 2*a*Sin[d + e*x])^(-1),x]

[Out]

(-(Log[Cos[(d + e*x)/2]]/e) + Log[Cos[(d + e*x)/2] + Sin[(d + e*x)/2]]/e)/(2*a)

________________________________________________________________________________________

fricas [A]  time = 1.17, size = 31, normalized size = 1.35 \[ -\frac {\log \left (\frac {1}{2} \, \cos \left (e x + d\right ) + \frac {1}{2}\right ) - \log \left (\sin \left (e x + d\right ) + 1\right )}{4 \, a e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*a+2*a*cos(e*x+d)+2*a*sin(e*x+d)),x, algorithm="fricas")

[Out]

-1/4*(log(1/2*cos(e*x + d) + 1/2) - log(sin(e*x + d) + 1))/(a*e)

________________________________________________________________________________________

giac [A]  time = 0.16, size = 21, normalized size = 0.91 \[ \frac {e^{\left (-1\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, x e + \frac {1}{2} \, d\right ) + 1 \right |}\right )}{2 \, a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*a+2*a*cos(e*x+d)+2*a*sin(e*x+d)),x, algorithm="giac")

[Out]

1/2*e^(-1)*log(abs(tan(1/2*x*e + 1/2*d) + 1))/a

________________________________________________________________________________________

maple [A]  time = 0.40, size = 21, normalized size = 0.91 \[ \frac {\ln \left (1+\tan \left (\frac {d}{2}+\frac {e x}{2}\right )\right )}{2 a e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2*a+2*a*cos(e*x+d)+2*a*sin(e*x+d)),x)

[Out]

1/2*ln(1+tan(1/2*d+1/2*e*x))/a/e

________________________________________________________________________________________

maxima [A]  time = 0.31, size = 28, normalized size = 1.22 \[ \frac {\log \left (\frac {\sin \left (e x + d\right )}{\cos \left (e x + d\right ) + 1} + 1\right )}{2 \, a e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*a+2*a*cos(e*x+d)+2*a*sin(e*x+d)),x, algorithm="maxima")

[Out]

1/2*log(sin(e*x + d)/(cos(e*x + d) + 1) + 1)/(a*e)

________________________________________________________________________________________

mupad [B]  time = 2.49, size = 20, normalized size = 0.87 \[ \frac {\ln \left (\mathrm {tan}\left (\frac {d}{2}+\frac {e\,x}{2}\right )+1\right )}{2\,a\,e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2*a + 2*a*cos(d + e*x) + 2*a*sin(d + e*x)),x)

[Out]

log(tan(d/2 + (e*x)/2) + 1)/(2*a*e)

________________________________________________________________________________________

sympy [A]  time = 0.61, size = 36, normalized size = 1.57 \[ \begin {cases} \frac {\log {\left (\tan {\left (\frac {d}{2} + \frac {e x}{2} \right )} + 1 \right )}}{2 a e} & \text {for}\: e \neq 0 \\\frac {x}{2 a \sin {\relax (d )} + 2 a \cos {\relax (d )} + 2 a} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*a+2*a*cos(e*x+d)+2*a*sin(e*x+d)),x)

[Out]

Piecewise((log(tan(d/2 + e*x/2) + 1)/(2*a*e), Ne(e, 0)), (x/(2*a*sin(d) + 2*a*cos(d) + 2*a), True))

________________________________________________________________________________________