3.398 \(\int (a+b \cos (d+e x)+c \sin (d+e x)) \, dx\)

Optimal. Leaf size=27 \[ a x+\frac {b \sin (d+e x)}{e}-\frac {c \cos (d+e x)}{e} \]

[Out]

a*x-c*cos(e*x+d)/e+b*sin(e*x+d)/e

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 27, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {2637, 2638} \[ a x+\frac {b \sin (d+e x)}{e}-\frac {c \cos (d+e x)}{e} \]

Antiderivative was successfully verified.

[In]

Int[a + b*Cos[d + e*x] + c*Sin[d + e*x],x]

[Out]

a*x - (c*Cos[d + e*x])/e + (b*Sin[d + e*x])/e

Rule 2637

Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 2638

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int (a+b \cos (d+e x)+c \sin (d+e x)) \, dx &=a x+b \int \cos (d+e x) \, dx+c \int \sin (d+e x) \, dx\\ &=a x-\frac {c \cos (d+e x)}{e}+\frac {b \sin (d+e x)}{e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 49, normalized size = 1.81 \[ a x+\frac {b \sin (d) \cos (e x)}{e}+\frac {b \cos (d) \sin (e x)}{e}+\frac {c \sin (d) \sin (e x)}{e}-\frac {c \cos (d) \cos (e x)}{e} \]

Antiderivative was successfully verified.

[In]

Integrate[a + b*Cos[d + e*x] + c*Sin[d + e*x],x]

[Out]

a*x - (c*Cos[d]*Cos[e*x])/e + (b*Cos[e*x]*Sin[d])/e + (b*Cos[d]*Sin[e*x])/e + (c*Sin[d]*Sin[e*x])/e

________________________________________________________________________________________

fricas [A]  time = 0.89, size = 26, normalized size = 0.96 \[ \frac {a e x - c \cos \left (e x + d\right ) + b \sin \left (e x + d\right )}{e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(a+b*cos(e*x+d)+c*sin(e*x+d),x, algorithm="fricas")

[Out]

(a*e*x - c*cos(e*x + d) + b*sin(e*x + d))/e

________________________________________________________________________________________

giac [A]  time = 0.15, size = 27, normalized size = 1.00 \[ -c \cos \left (x e + d\right ) e^{\left (-1\right )} + b e^{\left (-1\right )} \sin \left (x e + d\right ) + a x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(a+b*cos(e*x+d)+c*sin(e*x+d),x, algorithm="giac")

[Out]

-c*cos(x*e + d)*e^(-1) + b*e^(-1)*sin(x*e + d) + a*x

________________________________________________________________________________________

maple [A]  time = 0.00, size = 28, normalized size = 1.04 \[ a x -\frac {c \cos \left (e x +d \right )}{e}+\frac {b \sin \left (e x +d \right )}{e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(a+b*cos(e*x+d)+c*sin(e*x+d),x)

[Out]

a*x-c*cos(e*x+d)/e+b*sin(e*x+d)/e

________________________________________________________________________________________

maxima [A]  time = 0.31, size = 27, normalized size = 1.00 \[ a x - \frac {c \cos \left (e x + d\right )}{e} + \frac {b \sin \left (e x + d\right )}{e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(a+b*cos(e*x+d)+c*sin(e*x+d),x, algorithm="maxima")

[Out]

a*x - c*cos(e*x + d)/e + b*sin(e*x + d)/e

________________________________________________________________________________________

mupad [B]  time = 2.51, size = 40, normalized size = 1.48 \[ a\,x-\frac {2\,c-2\,b\,\mathrm {tan}\left (\frac {d}{2}+\frac {e\,x}{2}\right )}{e\,\left ({\mathrm {tan}\left (\frac {d}{2}+\frac {e\,x}{2}\right )}^2+1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(a + b*cos(d + e*x) + c*sin(d + e*x),x)

[Out]

a*x - (2*c - 2*b*tan(d/2 + (e*x)/2))/(e*(tan(d/2 + (e*x)/2)^2 + 1))

________________________________________________________________________________________

sympy [A]  time = 0.14, size = 34, normalized size = 1.26 \[ a x + b \left (\begin {cases} \frac {\sin {\left (d + e x \right )}}{e} & \text {for}\: e \neq 0 \\x \cos {\relax (d )} & \text {otherwise} \end {cases}\right ) + c \left (\begin {cases} - \frac {\cos {\left (d + e x \right )}}{e} & \text {for}\: e \neq 0 \\x \sin {\relax (d )} & \text {otherwise} \end {cases}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(a+b*cos(e*x+d)+c*sin(e*x+d),x)

[Out]

a*x + b*Piecewise((sin(d + e*x)/e, Ne(e, 0)), (x*cos(d), True)) + c*Piecewise((-cos(d + e*x)/e, Ne(e, 0)), (x*
sin(d), True))

________________________________________________________________________________________