3.540 \(\int \frac {A+C \sin (x)}{a+b \cos (x)+c \sin (x)} \, dx\)

Optimal. Leaf size=116 \[ \frac {2 \left (A \left (b^2+c^2\right )-a c C\right ) \tan ^{-1}\left (\frac {(a-b) \tan \left (\frac {x}{2}\right )+c}{\sqrt {a^2-b^2-c^2}}\right )}{\left (b^2+c^2\right ) \sqrt {a^2-b^2-c^2}}-\frac {b C \log (a+b \cos (x)+c \sin (x))}{b^2+c^2}+\frac {c C x}{b^2+c^2} \]

[Out]

c*C*x/(b^2+c^2)-b*C*ln(a+b*cos(x)+c*sin(x))/(b^2+c^2)+2*(A*(b^2+c^2)-a*c*C)*arctan((c+(a-b)*tan(1/2*x))/(a^2-b
^2-c^2)^(1/2))/(b^2+c^2)/(a^2-b^2-c^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {3137, 3124, 618, 204} \[ \frac {2 \left (A \left (b^2+c^2\right )-a c C\right ) \tan ^{-1}\left (\frac {(a-b) \tan \left (\frac {x}{2}\right )+c}{\sqrt {a^2-b^2-c^2}}\right )}{\left (b^2+c^2\right ) \sqrt {a^2-b^2-c^2}}-\frac {b C \log (a+b \cos (x)+c \sin (x))}{b^2+c^2}+\frac {c C x}{b^2+c^2} \]

Antiderivative was successfully verified.

[In]

Int[(A + C*Sin[x])/(a + b*Cos[x] + c*Sin[x]),x]

[Out]

(c*C*x)/(b^2 + c^2) + (2*(A*(b^2 + c^2) - a*c*C)*ArcTan[(c + (a - b)*Tan[x/2])/Sqrt[a^2 - b^2 - c^2]])/(Sqrt[a
^2 - b^2 - c^2]*(b^2 + c^2)) - (b*C*Log[a + b*Cos[x] + c*Sin[x]])/(b^2 + c^2)

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 3124

Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(-1), x_Symbol] :> Module[{f = Free
Factors[Tan[(d + e*x)/2], x]}, Dist[(2*f)/e, Subst[Int[1/(a + b + 2*c*f*x + (a - b)*f^2*x^2), x], x, Tan[(d +
e*x)/2]/f], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0]

Rule 3137

Int[((A_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + (c_.)*sin[(d_.) + (e_.)*(
x_)]), x_Symbol] :> Simp[(c*C*(d + e*x))/(e*(b^2 + c^2)), x] + (Dist[(A*(b^2 + c^2) - a*c*C)/(b^2 + c^2), Int[
1/(a + b*Cos[d + e*x] + c*Sin[d + e*x]), x], x] - Simp[(b*C*Log[a + b*Cos[d + e*x] + c*Sin[d + e*x]])/(e*(b^2
+ c^2)), x]) /; FreeQ[{a, b, c, d, e, A, C}, x] && NeQ[b^2 + c^2, 0] && NeQ[A*(b^2 + c^2) - a*c*C, 0]

Rubi steps

\begin {align*} \int \frac {A+C \sin (x)}{a+b \cos (x)+c \sin (x)} \, dx &=\frac {c C x}{b^2+c^2}-\frac {b C \log (a+b \cos (x)+c \sin (x))}{b^2+c^2}+\left (A-\frac {a c C}{b^2+c^2}\right ) \int \frac {1}{a+b \cos (x)+c \sin (x)} \, dx\\ &=\frac {c C x}{b^2+c^2}-\frac {b C \log (a+b \cos (x)+c \sin (x))}{b^2+c^2}+\left (2 \left (A-\frac {a c C}{b^2+c^2}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{a+b+2 c x+(a-b) x^2} \, dx,x,\tan \left (\frac {x}{2}\right )\right )\\ &=\frac {c C x}{b^2+c^2}-\frac {b C \log (a+b \cos (x)+c \sin (x))}{b^2+c^2}-\left (4 \left (A-\frac {a c C}{b^2+c^2}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-4 \left (a^2-b^2-c^2\right )-x^2} \, dx,x,2 c+2 (a-b) \tan \left (\frac {x}{2}\right )\right )\\ &=\frac {c C x}{b^2+c^2}+\frac {2 \left (A-\frac {a c C}{b^2+c^2}\right ) \tan ^{-1}\left (\frac {c+(a-b) \tan \left (\frac {x}{2}\right )}{\sqrt {a^2-b^2-c^2}}\right )}{\sqrt {a^2-b^2-c^2}}-\frac {b C \log (a+b \cos (x)+c \sin (x))}{b^2+c^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.29, size = 96, normalized size = 0.83 \[ \frac {C (c x-b \log (a+b \cos (x)+c \sin (x)))-\frac {2 \left (A \left (b^2+c^2\right )-a c C\right ) \tanh ^{-1}\left (\frac {(a-b) \tan \left (\frac {x}{2}\right )+c}{\sqrt {-a^2+b^2+c^2}}\right )}{\sqrt {-a^2+b^2+c^2}}}{b^2+c^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + C*Sin[x])/(a + b*Cos[x] + c*Sin[x]),x]

[Out]

((-2*(A*(b^2 + c^2) - a*c*C)*ArcTanh[(c + (a - b)*Tan[x/2])/Sqrt[-a^2 + b^2 + c^2]])/Sqrt[-a^2 + b^2 + c^2] +
C*(c*x - b*Log[a + b*Cos[x] + c*Sin[x]]))/(b^2 + c^2)

________________________________________________________________________________________

fricas [B]  time = 2.59, size = 625, normalized size = 5.39 \[ \left [\frac {{\left (A b^{2} - C a c + A c^{2}\right )} \sqrt {-a^{2} + b^{2} + c^{2}} \log \left (\frac {a^{2} b^{2} - 2 \, b^{4} - c^{4} - {\left (a^{2} + 3 \, b^{2}\right )} c^{2} - {\left (2 \, a^{2} b^{2} - b^{4} - 2 \, a^{2} c^{2} + c^{4}\right )} \cos \relax (x)^{2} - 2 \, {\left (a b^{3} + a b c^{2}\right )} \cos \relax (x) - 2 \, {\left (a b^{2} c + a c^{3} - {\left (b c^{3} - {\left (2 \, a^{2} b - b^{3}\right )} c\right )} \cos \relax (x)\right )} \sin \relax (x) - 2 \, {\left (2 \, a b c \cos \relax (x)^{2} - a b c + {\left (b^{2} c + c^{3}\right )} \cos \relax (x) - {\left (b^{3} + b c^{2} + {\left (a b^{2} - a c^{2}\right )} \cos \relax (x)\right )} \sin \relax (x)\right )} \sqrt {-a^{2} + b^{2} + c^{2}}}{2 \, a b \cos \relax (x) + {\left (b^{2} - c^{2}\right )} \cos \relax (x)^{2} + a^{2} + c^{2} + 2 \, {\left (b c \cos \relax (x) + a c\right )} \sin \relax (x)}\right ) - 2 \, {\left (C c^{3} - {\left (C a^{2} - C b^{2}\right )} c\right )} x - {\left (C a^{2} b - C b^{3} - C b c^{2}\right )} \log \left (2 \, a b \cos \relax (x) + {\left (b^{2} - c^{2}\right )} \cos \relax (x)^{2} + a^{2} + c^{2} + 2 \, {\left (b c \cos \relax (x) + a c\right )} \sin \relax (x)\right )}{2 \, {\left (a^{2} b^{2} - b^{4} - c^{4} + {\left (a^{2} - 2 \, b^{2}\right )} c^{2}\right )}}, \frac {2 \, {\left (A b^{2} - C a c + A c^{2}\right )} \sqrt {a^{2} - b^{2} - c^{2}} \arctan \left (-\frac {{\left (a b \cos \relax (x) + a c \sin \relax (x) + b^{2} + c^{2}\right )} \sqrt {a^{2} - b^{2} - c^{2}}}{{\left (c^{3} - {\left (a^{2} - b^{2}\right )} c\right )} \cos \relax (x) + {\left (a^{2} b - b^{3} - b c^{2}\right )} \sin \relax (x)}\right ) - 2 \, {\left (C c^{3} - {\left (C a^{2} - C b^{2}\right )} c\right )} x - {\left (C a^{2} b - C b^{3} - C b c^{2}\right )} \log \left (2 \, a b \cos \relax (x) + {\left (b^{2} - c^{2}\right )} \cos \relax (x)^{2} + a^{2} + c^{2} + 2 \, {\left (b c \cos \relax (x) + a c\right )} \sin \relax (x)\right )}{2 \, {\left (a^{2} b^{2} - b^{4} - c^{4} + {\left (a^{2} - 2 \, b^{2}\right )} c^{2}\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sin(x))/(a+b*cos(x)+c*sin(x)),x, algorithm="fricas")

[Out]

[1/2*((A*b^2 - C*a*c + A*c^2)*sqrt(-a^2 + b^2 + c^2)*log((a^2*b^2 - 2*b^4 - c^4 - (a^2 + 3*b^2)*c^2 - (2*a^2*b
^2 - b^4 - 2*a^2*c^2 + c^4)*cos(x)^2 - 2*(a*b^3 + a*b*c^2)*cos(x) - 2*(a*b^2*c + a*c^3 - (b*c^3 - (2*a^2*b - b
^3)*c)*cos(x))*sin(x) - 2*(2*a*b*c*cos(x)^2 - a*b*c + (b^2*c + c^3)*cos(x) - (b^3 + b*c^2 + (a*b^2 - a*c^2)*co
s(x))*sin(x))*sqrt(-a^2 + b^2 + c^2))/(2*a*b*cos(x) + (b^2 - c^2)*cos(x)^2 + a^2 + c^2 + 2*(b*c*cos(x) + a*c)*
sin(x))) - 2*(C*c^3 - (C*a^2 - C*b^2)*c)*x - (C*a^2*b - C*b^3 - C*b*c^2)*log(2*a*b*cos(x) + (b^2 - c^2)*cos(x)
^2 + a^2 + c^2 + 2*(b*c*cos(x) + a*c)*sin(x)))/(a^2*b^2 - b^4 - c^4 + (a^2 - 2*b^2)*c^2), 1/2*(2*(A*b^2 - C*a*
c + A*c^2)*sqrt(a^2 - b^2 - c^2)*arctan(-(a*b*cos(x) + a*c*sin(x) + b^2 + c^2)*sqrt(a^2 - b^2 - c^2)/((c^3 - (
a^2 - b^2)*c)*cos(x) + (a^2*b - b^3 - b*c^2)*sin(x))) - 2*(C*c^3 - (C*a^2 - C*b^2)*c)*x - (C*a^2*b - C*b^3 - C
*b*c^2)*log(2*a*b*cos(x) + (b^2 - c^2)*cos(x)^2 + a^2 + c^2 + 2*(b*c*cos(x) + a*c)*sin(x)))/(a^2*b^2 - b^4 - c
^4 + (a^2 - 2*b^2)*c^2)]

________________________________________________________________________________________

giac [A]  time = 0.19, size = 177, normalized size = 1.53 \[ \frac {C c x}{b^{2} + c^{2}} - \frac {C b \log \left (-a \tan \left (\frac {1}{2} \, x\right )^{2} + b \tan \left (\frac {1}{2} \, x\right )^{2} - 2 \, c \tan \left (\frac {1}{2} \, x\right ) - a - b\right )}{b^{2} + c^{2}} + \frac {C b \log \left (\tan \left (\frac {1}{2} \, x\right )^{2} + 1\right )}{b^{2} + c^{2}} - \frac {2 \, {\left (A b^{2} - C a c + A c^{2}\right )} {\left (\pi \left \lfloor \frac {x}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, x\right ) - b \tan \left (\frac {1}{2} \, x\right ) + c}{\sqrt {a^{2} - b^{2} - c^{2}}}\right )\right )}}{\sqrt {a^{2} - b^{2} - c^{2}} {\left (b^{2} + c^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sin(x))/(a+b*cos(x)+c*sin(x)),x, algorithm="giac")

[Out]

C*c*x/(b^2 + c^2) - C*b*log(-a*tan(1/2*x)^2 + b*tan(1/2*x)^2 - 2*c*tan(1/2*x) - a - b)/(b^2 + c^2) + C*b*log(t
an(1/2*x)^2 + 1)/(b^2 + c^2) - 2*(A*b^2 - C*a*c + A*c^2)*(pi*floor(1/2*x/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(
a*tan(1/2*x) - b*tan(1/2*x) + c)/sqrt(a^2 - b^2 - c^2)))/(sqrt(a^2 - b^2 - c^2)*(b^2 + c^2))

________________________________________________________________________________________

maple [B]  time = 0.13, size = 542, normalized size = 4.67 \[ -\frac {\ln \left (a \left (\tan ^{2}\left (\frac {x}{2}\right )\right )-b \left (\tan ^{2}\left (\frac {x}{2}\right )\right )+2 c \tan \left (\frac {x}{2}\right )+a +b \right ) a b C}{\left (b^{2}+c^{2}\right ) \left (a -b \right )}+\frac {\ln \left (a \left (\tan ^{2}\left (\frac {x}{2}\right )\right )-b \left (\tan ^{2}\left (\frac {x}{2}\right )\right )+2 c \tan \left (\frac {x}{2}\right )+a +b \right ) b^{2} C}{\left (b^{2}+c^{2}\right ) \left (a -b \right )}+\frac {2 \arctan \left (\frac {2 \left (a -b \right ) \tan \left (\frac {x}{2}\right )+2 c}{2 \sqrt {a^{2}-b^{2}-c^{2}}}\right ) A \,b^{2}}{\left (b^{2}+c^{2}\right ) \sqrt {a^{2}-b^{2}-c^{2}}}+\frac {2 \arctan \left (\frac {2 \left (a -b \right ) \tan \left (\frac {x}{2}\right )+2 c}{2 \sqrt {a^{2}-b^{2}-c^{2}}}\right ) A \,c^{2}}{\left (b^{2}+c^{2}\right ) \sqrt {a^{2}-b^{2}-c^{2}}}-\frac {2 \arctan \left (\frac {2 \left (a -b \right ) \tan \left (\frac {x}{2}\right )+2 c}{2 \sqrt {a^{2}-b^{2}-c^{2}}}\right ) a c C}{\left (b^{2}+c^{2}\right ) \sqrt {a^{2}-b^{2}-c^{2}}}-\frac {2 \arctan \left (\frac {2 \left (a -b \right ) \tan \left (\frac {x}{2}\right )+2 c}{2 \sqrt {a^{2}-b^{2}-c^{2}}}\right ) C b c}{\left (b^{2}+c^{2}\right ) \sqrt {a^{2}-b^{2}-c^{2}}}+\frac {2 \arctan \left (\frac {2 \left (a -b \right ) \tan \left (\frac {x}{2}\right )+2 c}{2 \sqrt {a^{2}-b^{2}-c^{2}}}\right ) c a b C}{\left (b^{2}+c^{2}\right ) \sqrt {a^{2}-b^{2}-c^{2}}\, \left (a -b \right )}-\frac {2 \arctan \left (\frac {2 \left (a -b \right ) \tan \left (\frac {x}{2}\right )+2 c}{2 \sqrt {a^{2}-b^{2}-c^{2}}}\right ) c \,b^{2} C}{\left (b^{2}+c^{2}\right ) \sqrt {a^{2}-b^{2}-c^{2}}\, \left (a -b \right )}+\frac {C b \ln \left (1+\tan ^{2}\left (\frac {x}{2}\right )\right )}{b^{2}+c^{2}}+\frac {2 C c \arctan \left (\tan \left (\frac {x}{2}\right )\right )}{b^{2}+c^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*sin(x))/(a+b*cos(x)+c*sin(x)),x)

[Out]

-1/(b^2+c^2)/(a-b)*ln(a*tan(1/2*x)^2-b*tan(1/2*x)^2+2*c*tan(1/2*x)+a+b)*a*b*C+1/(b^2+c^2)/(a-b)*ln(a*tan(1/2*x
)^2-b*tan(1/2*x)^2+2*c*tan(1/2*x)+a+b)*b^2*C+2/(b^2+c^2)/(a^2-b^2-c^2)^(1/2)*arctan(1/2*(2*(a-b)*tan(1/2*x)+2*
c)/(a^2-b^2-c^2)^(1/2))*A*b^2+2/(b^2+c^2)/(a^2-b^2-c^2)^(1/2)*arctan(1/2*(2*(a-b)*tan(1/2*x)+2*c)/(a^2-b^2-c^2
)^(1/2))*A*c^2-2/(b^2+c^2)/(a^2-b^2-c^2)^(1/2)*arctan(1/2*(2*(a-b)*tan(1/2*x)+2*c)/(a^2-b^2-c^2)^(1/2))*a*c*C-
2/(b^2+c^2)/(a^2-b^2-c^2)^(1/2)*arctan(1/2*(2*(a-b)*tan(1/2*x)+2*c)/(a^2-b^2-c^2)^(1/2))*C*b*c+2/(b^2+c^2)/(a^
2-b^2-c^2)^(1/2)*arctan(1/2*(2*(a-b)*tan(1/2*x)+2*c)/(a^2-b^2-c^2)^(1/2))*c/(a-b)*a*b*C-2/(b^2+c^2)/(a^2-b^2-c
^2)^(1/2)*arctan(1/2*(2*(a-b)*tan(1/2*x)+2*c)/(a^2-b^2-c^2)^(1/2))*c/(a-b)*b^2*C+C/(b^2+c^2)*b*ln(1+tan(1/2*x)
^2)+2*C/(b^2+c^2)*c*arctan(tan(1/2*x))

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sin(x))/(a+b*cos(x)+c*sin(x)),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(c^2+b^2-a^2>0)', see `assume?`
 for more details)Is c^2+b^2-a^2 positive or negative?

________________________________________________________________________________________

mupad [B]  time = 24.86, size = 1741, normalized size = 15.01 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + C*sin(x))/(a + b*cos(x) + c*sin(x)),x)

[Out]

(C*log(tan(x/2) + 1i))/(b - c*1i) + (C*log(tan(x/2) - 1i)*1i)/(b*1i - c) - (log(32*A*C^2*a^2 + 32*A*C^2*b^2 -
64*A*C^2*a*b - 32*A^2*C*a*c + 32*A^2*C*b*c + 32*C*tan(x/2)*(a - b)*(A^2*b + 2*C^2*a - 2*C^2*b - 2*A*C*c) + ((C
*b^3 + A*b^2*(b^2 - a^2 + c^2)^(1/2) - C*a^2*b + A*c^2*(b^2 - a^2 + c^2)^(1/2) + C*b*c^2 - C*a*c*(b^2 - a^2 +
c^2)^(1/2))*(64*A^2*b^2*c + 32*C^2*a^2*c + 32*C^2*b^2*c + 64*A*C*b^3 + 32*tan(x/2)*(a - b)*(A^2*b^2 - A^2*c^2
- 2*C^2*a^2 + 2*C^2*c^2 + 2*C^2*a*b + 2*A*C*a*c - 4*A*C*b*c) - 128*A*C*a*b^2 + 64*A*C*a^2*b - 64*A^2*a*b*c - 6
4*C^2*a*b*c + ((C*b^3 + A*b^2*(b^2 - a^2 + c^2)^(1/2) - C*a^2*b + A*c^2*(b^2 - a^2 + c^2)^(1/2) + C*b*c^2 - C*
a*c*(b^2 - a^2 + c^2)^(1/2))*(32*A*b^4 + 32*A*a^2*b^2 - 32*A*a^2*c^2 + 32*A*b^2*c^2 - 32*tan(x/2)*(a - b)*(2*A
*c^3 - 2*C*b^3 + 2*A*b^2*c + 2*C*a*b^2 - 2*C*a*c^2 + C*b*c^2 - 2*A*a*b*c) - 64*A*a*b^3 + 32*C*a*c^3 - 32*C*b*c
^3 + 64*C*b^3*c - 128*C*a*b^2*c + 64*C*a^2*b*c + (32*(a - b)*(C*b^3 + A*b^2*(b^2 - a^2 + c^2)^(1/2) - C*a^2*b
+ A*c^2*(b^2 - a^2 + c^2)^(1/2) + C*b*c^2 - C*a*c*(b^2 - a^2 + c^2)^(1/2))*(3*c^4*tan(x/2) + a*c^3 + 3*b*c^3 +
 3*b^3*c + 2*a^2*b^2*tan(x/2) - 2*a^2*c^2*tan(x/2) + 3*b^2*c^2*tan(x/2) - 2*a*b^3*tan(x/2) + a*b^2*c - 4*a^2*b
*c - 2*a*b*c^2*tan(x/2)))/((b^2 + c^2)*(b^2 - a^2 + c^2))))/((b^2 + c^2)*(b^2 - a^2 + c^2))))/((b^2 + c^2)*(b^
2 - a^2 + c^2)))*(C*b^3 - b*(C*a^2 - C*c^2) + A*b^2*(b^2 - a^2 + c^2)^(1/2) + A*c^2*(b^2 - a^2 + c^2)^(1/2) -
C*a*c*(b^2 - a^2 + c^2)^(1/2)))/((b^2 + c^2)*(b^2 - a^2 + c^2)) + (log(32*A*C^2*a^2 + 32*A*C^2*b^2 - 64*A*C^2*
a*b - 32*A^2*C*a*c + 32*A^2*C*b*c + 32*C*tan(x/2)*(a - b)*(A^2*b + 2*C^2*a - 2*C^2*b - 2*A*C*c) + ((C*b^3 - A*
b^2*(b^2 - a^2 + c^2)^(1/2) - C*a^2*b - A*c^2*(b^2 - a^2 + c^2)^(1/2) + C*b*c^2 + C*a*c*(b^2 - a^2 + c^2)^(1/2
))*(64*A^2*b^2*c + 32*C^2*a^2*c + 32*C^2*b^2*c + 64*A*C*b^3 + 32*tan(x/2)*(a - b)*(A^2*b^2 - A^2*c^2 - 2*C^2*a
^2 + 2*C^2*c^2 + 2*C^2*a*b + 2*A*C*a*c - 4*A*C*b*c) - 128*A*C*a*b^2 + 64*A*C*a^2*b - 64*A^2*a*b*c - 64*C^2*a*b
*c + ((C*b^3 - A*b^2*(b^2 - a^2 + c^2)^(1/2) - C*a^2*b - A*c^2*(b^2 - a^2 + c^2)^(1/2) + C*b*c^2 + C*a*c*(b^2
- a^2 + c^2)^(1/2))*(32*A*b^4 + 32*A*a^2*b^2 - 32*A*a^2*c^2 + 32*A*b^2*c^2 - 32*tan(x/2)*(a - b)*(2*A*c^3 - 2*
C*b^3 + 2*A*b^2*c + 2*C*a*b^2 - 2*C*a*c^2 + C*b*c^2 - 2*A*a*b*c) - 64*A*a*b^3 + 32*C*a*c^3 - 32*C*b*c^3 + 64*C
*b^3*c - 128*C*a*b^2*c + 64*C*a^2*b*c + (32*(a - b)*(C*b^3 - A*b^2*(b^2 - a^2 + c^2)^(1/2) - C*a^2*b - A*c^2*(
b^2 - a^2 + c^2)^(1/2) + C*b*c^2 + C*a*c*(b^2 - a^2 + c^2)^(1/2))*(3*c^4*tan(x/2) + a*c^3 + 3*b*c^3 + 3*b^3*c
+ 2*a^2*b^2*tan(x/2) - 2*a^2*c^2*tan(x/2) + 3*b^2*c^2*tan(x/2) - 2*a*b^3*tan(x/2) + a*b^2*c - 4*a^2*b*c - 2*a*
b*c^2*tan(x/2)))/((b^2 + c^2)*(b^2 - a^2 + c^2))))/((b^2 + c^2)*(b^2 - a^2 + c^2))))/((b^2 + c^2)*(b^2 - a^2 +
 c^2)))*(b*(C*a^2 - C*c^2) - C*b^3 + A*b^2*(b^2 - a^2 + c^2)^(1/2) + A*c^2*(b^2 - a^2 + c^2)^(1/2) - C*a*c*(b^
2 - a^2 + c^2)^(1/2)))/((b^2 + c^2)*(b^2 - a^2 + c^2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sin(x))/(a+b*cos(x)+c*sin(x)),x)

[Out]

Timed out

________________________________________________________________________________________