3.558 \(\int \sqrt {a+b \cos (x)+c \sin (x)} (d+b e \cos (x)+c e \sin (x)) \, dx\)

Optimal. Leaf size=229 \[ -\frac {2 e \left (a^2-b^2-c^2\right ) \sqrt {\frac {a+b \cos (x)+c \sin (x)}{a+\sqrt {b^2+c^2}}} F\left (\frac {1}{2} \left (x-\tan ^{-1}(b,c)\right )|\frac {2 \sqrt {b^2+c^2}}{a+\sqrt {b^2+c^2}}\right )}{3 \sqrt {a+b \cos (x)+c \sin (x)}}+\frac {2 (a e+3 d) \sqrt {a+b \cos (x)+c \sin (x)} E\left (\frac {1}{2} \left (x-\tan ^{-1}(b,c)\right )|\frac {2 \sqrt {b^2+c^2}}{a+\sqrt {b^2+c^2}}\right )}{3 \sqrt {\frac {a+b \cos (x)+c \sin (x)}{a+\sqrt {b^2+c^2}}}}-\frac {2}{3} \sqrt {a+b \cos (x)+c \sin (x)} (c e \cos (x)-b e \sin (x)) \]

[Out]

-2/3*(c*e*cos(x)-b*e*sin(x))*(a+b*cos(x)+c*sin(x))^(1/2)+2/3*(a*e+3*d)*(cos(1/2*x-1/2*arctan(b,c))^2)^(1/2)/co
s(1/2*x-1/2*arctan(b,c))*EllipticE(sin(1/2*x-1/2*arctan(b,c)),2^(1/2)*((b^2+c^2)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1
/2))*(a+b*cos(x)+c*sin(x))^(1/2)/((a+b*cos(x)+c*sin(x))/(a+(b^2+c^2)^(1/2)))^(1/2)-2/3*(a^2-b^2-c^2)*e*(cos(1/
2*x-1/2*arctan(b,c))^2)^(1/2)/cos(1/2*x-1/2*arctan(b,c))*EllipticF(sin(1/2*x-1/2*arctan(b,c)),2^(1/2)*((b^2+c^
2)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2))*((a+b*cos(x)+c*sin(x))/(a+(b^2+c^2)^(1/2)))^(1/2)/(a+b*cos(x)+c*sin(x))^(
1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.33, antiderivative size = 229, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {3146, 3149, 3119, 2653, 3127, 2661} \[ -\frac {2 e \left (a^2-b^2-c^2\right ) \sqrt {\frac {a+b \cos (x)+c \sin (x)}{a+\sqrt {b^2+c^2}}} F\left (\frac {1}{2} \left (x-\tan ^{-1}(b,c)\right )|\frac {2 \sqrt {b^2+c^2}}{a+\sqrt {b^2+c^2}}\right )}{3 \sqrt {a+b \cos (x)+c \sin (x)}}+\frac {2 (a e+3 d) \sqrt {a+b \cos (x)+c \sin (x)} E\left (\frac {1}{2} \left (x-\tan ^{-1}(b,c)\right )|\frac {2 \sqrt {b^2+c^2}}{a+\sqrt {b^2+c^2}}\right )}{3 \sqrt {\frac {a+b \cos (x)+c \sin (x)}{a+\sqrt {b^2+c^2}}}}-\frac {2}{3} \sqrt {a+b \cos (x)+c \sin (x)} (c e \cos (x)-b e \sin (x)) \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Cos[x] + c*Sin[x]]*(d + b*e*Cos[x] + c*e*Sin[x]),x]

[Out]

(2*(3*d + a*e)*EllipticE[(x - ArcTan[b, c])/2, (2*Sqrt[b^2 + c^2])/(a + Sqrt[b^2 + c^2])]*Sqrt[a + b*Cos[x] +
c*Sin[x]])/(3*Sqrt[(a + b*Cos[x] + c*Sin[x])/(a + Sqrt[b^2 + c^2])]) - (2*(a^2 - b^2 - c^2)*e*EllipticF[(x - A
rcTan[b, c])/2, (2*Sqrt[b^2 + c^2])/(a + Sqrt[b^2 + c^2])]*Sqrt[(a + b*Cos[x] + c*Sin[x])/(a + Sqrt[b^2 + c^2]
)])/(3*Sqrt[a + b*Cos[x] + c*Sin[x]]) - (2*Sqrt[a + b*Cos[x] + c*Sin[x]]*(c*e*Cos[x] - b*e*Sin[x]))/3

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3119

Int[Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*C
os[d + e*x] + c*Sin[d + e*x]]/Sqrt[(a + b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])], Int[Sqrt[a/(a
 + Sqrt[b^2 + c^2]) + (Sqrt[b^2 + c^2]*Cos[d + e*x - ArcTan[b, c]])/(a + Sqrt[b^2 + c^2])], x], x] /; FreeQ[{a
, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[b^2 + c^2, 0] &&  !GtQ[a + Sqrt[b^2 + c^2], 0]

Rule 3127

Int[1/Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a +
b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])]/Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]], Int[1/Sqrt[
a/(a + Sqrt[b^2 + c^2]) + (Sqrt[b^2 + c^2]*Cos[d + e*x - ArcTan[b, c]])/(a + Sqrt[b^2 + c^2])], x], x] /; Free
Q[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[b^2 + c^2, 0] &&  !GtQ[a + Sqrt[b^2 + c^2], 0]

Rule 3146

Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_.)*((A_.) + cos[(d_.) + (e_.)*(x
_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)]), x_Symbol] :> Simp[((B*c - b*C - a*C*Cos[d + e*x] + a*B*Sin[d + e*x
])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^n)/(a*e*(n + 1)), x] + Dist[1/(a*(n + 1)), Int[(a + b*Cos[d + e*x] +
c*Sin[d + e*x])^(n - 1)*Simp[a*(b*B + c*C)*n + a^2*A*(n + 1) + (n*(a^2*B - B*c^2 + b*c*C) + a*b*A*(n + 1))*Cos
[d + e*x] + (n*(b*B*c + a^2*C - b^2*C) + a*c*A*(n + 1))*Sin[d + e*x], x], x], x] /; FreeQ[{a, b, c, d, e, A, B
, C}, x] && GtQ[n, 0] && NeQ[a^2 - b^2 - c^2, 0]

Rule 3149

Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.)
 + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Dist[B/b, Int[Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]]
, x], x] + Dist[(A*b - a*B)/b, Int[1/Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]], x], x] /; FreeQ[{a, b, c, d, e
, A, B, C}, x] && EqQ[B*c - b*C, 0] && NeQ[A*b - a*B, 0]

Rubi steps

\begin {align*} \int \sqrt {a+b \cos (x)+c \sin (x)} (d+b e \cos (x)+c e \sin (x)) \, dx &=-\frac {2}{3} \sqrt {a+b \cos (x)+c \sin (x)} (c e \cos (x)-b e \sin (x))+\frac {2 \int \frac {\frac {1}{2} a \left (3 a d+\left (b^2+c^2\right ) e\right )+\frac {1}{2} a b (3 d+a e) \cos (x)+\frac {1}{2} a c (3 d+a e) \sin (x)}{\sqrt {a+b \cos (x)+c \sin (x)}} \, dx}{3 a}\\ &=-\frac {2}{3} \sqrt {a+b \cos (x)+c \sin (x)} (c e \cos (x)-b e \sin (x))-\frac {1}{3} \left (\left (a^2-b^2-c^2\right ) e\right ) \int \frac {1}{\sqrt {a+b \cos (x)+c \sin (x)}} \, dx+\frac {1}{3} (3 d+a e) \int \sqrt {a+b \cos (x)+c \sin (x)} \, dx\\ &=-\frac {2}{3} \sqrt {a+b \cos (x)+c \sin (x)} (c e \cos (x)-b e \sin (x))+\frac {\left ((3 d+a e) \sqrt {a+b \cos (x)+c \sin (x)}\right ) \int \sqrt {\frac {a}{a+\sqrt {b^2+c^2}}+\frac {\sqrt {b^2+c^2} \cos \left (x-\tan ^{-1}(b,c)\right )}{a+\sqrt {b^2+c^2}}} \, dx}{3 \sqrt {\frac {a+b \cos (x)+c \sin (x)}{a+\sqrt {b^2+c^2}}}}-\frac {\left (\left (a^2-b^2-c^2\right ) e \sqrt {\frac {a+b \cos (x)+c \sin (x)}{a+\sqrt {b^2+c^2}}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+\sqrt {b^2+c^2}}+\frac {\sqrt {b^2+c^2} \cos \left (x-\tan ^{-1}(b,c)\right )}{a+\sqrt {b^2+c^2}}}} \, dx}{3 \sqrt {a+b \cos (x)+c \sin (x)}}\\ &=\frac {2 (3 d+a e) E\left (\frac {1}{2} \left (x-\tan ^{-1}(b,c)\right )|\frac {2 \sqrt {b^2+c^2}}{a+\sqrt {b^2+c^2}}\right ) \sqrt {a+b \cos (x)+c \sin (x)}}{3 \sqrt {\frac {a+b \cos (x)+c \sin (x)}{a+\sqrt {b^2+c^2}}}}-\frac {2 \left (a^2-b^2-c^2\right ) e F\left (\frac {1}{2} \left (x-\tan ^{-1}(b,c)\right )|\frac {2 \sqrt {b^2+c^2}}{a+\sqrt {b^2+c^2}}\right ) \sqrt {\frac {a+b \cos (x)+c \sin (x)}{a+\sqrt {b^2+c^2}}}}{3 \sqrt {a+b \cos (x)+c \sin (x)}}-\frac {2}{3} \sqrt {a+b \cos (x)+c \sin (x)} (c e \cos (x)-b e \sin (x))\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 6.37, size = 3006, normalized size = 13.13 \[ \text {Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[a + b*Cos[x] + c*Sin[x]]*(d + b*e*Cos[x] + c*e*Sin[x]),x]

[Out]

Sqrt[a + b*Cos[x] + c*Sin[x]]*((2*b*(3*d + a*e))/(3*c) - (2*c*e*Cos[x])/3 + (2*b*e*Sin[x])/3) + (2*a*d*AppellF
1[1/2, 1/2, 1/2, 3/2, -((a + Sqrt[1 + b^2/c^2]*c*Sin[x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(1 - a/(Sqrt[1 + b^2
/c^2]*c))*c)), -((a + Sqrt[1 + b^2/c^2]*c*Sin[x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(-1 - a/(Sqrt[1 + b^2/c^2]*
c))*c))]*Sec[x + ArcTan[b/c]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] - c*Sqrt[(b^2 + c^2)/c^2]*Sin[x + ArcTan[b/c]])/(a
 + c*Sqrt[(b^2 + c^2)/c^2])]*Sqrt[a + c*Sqrt[(b^2 + c^2)/c^2]*Sin[x + ArcTan[b/c]]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c
^2] + c*Sqrt[(b^2 + c^2)/c^2]*Sin[x + ArcTan[b/c]])/(-a + c*Sqrt[(b^2 + c^2)/c^2])])/(Sqrt[1 + b^2/c^2]*c) + (
2*b^2*e*AppellF1[1/2, 1/2, 1/2, 3/2, -((a + Sqrt[1 + b^2/c^2]*c*Sin[x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(1 -
a/(Sqrt[1 + b^2/c^2]*c))*c)), -((a + Sqrt[1 + b^2/c^2]*c*Sin[x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(-1 - a/(Sqr
t[1 + b^2/c^2]*c))*c))]*Sec[x + ArcTan[b/c]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] - c*Sqrt[(b^2 + c^2)/c^2]*Sin[x + A
rcTan[b/c]])/(a + c*Sqrt[(b^2 + c^2)/c^2])]*Sqrt[a + c*Sqrt[(b^2 + c^2)/c^2]*Sin[x + ArcTan[b/c]]]*Sqrt[(c*Sqr
t[(b^2 + c^2)/c^2] + c*Sqrt[(b^2 + c^2)/c^2]*Sin[x + ArcTan[b/c]])/(-a + c*Sqrt[(b^2 + c^2)/c^2])])/(3*Sqrt[1
+ b^2/c^2]*c) + (2*c*e*AppellF1[1/2, 1/2, 1/2, 3/2, -((a + Sqrt[1 + b^2/c^2]*c*Sin[x + ArcTan[b/c]])/(Sqrt[1 +
 b^2/c^2]*(1 - a/(Sqrt[1 + b^2/c^2]*c))*c)), -((a + Sqrt[1 + b^2/c^2]*c*Sin[x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^
2]*(-1 - a/(Sqrt[1 + b^2/c^2]*c))*c))]*Sec[x + ArcTan[b/c]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] - c*Sqrt[(b^2 + c^2)
/c^2]*Sin[x + ArcTan[b/c]])/(a + c*Sqrt[(b^2 + c^2)/c^2])]*Sqrt[a + c*Sqrt[(b^2 + c^2)/c^2]*Sin[x + ArcTan[b/c
]]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] + c*Sqrt[(b^2 + c^2)/c^2]*Sin[x + ArcTan[b/c]])/(-a + c*Sqrt[(b^2 + c^2)/c^2
])])/(3*Sqrt[1 + b^2/c^2]) + (b^2*d*(-((c*AppellF1[-1/2, -1/2, -1/2, 1/2, -((a + b*Sqrt[1 + c^2/b^2]*Cos[x - A
rcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(1 - a/(b*Sqrt[1 + c^2/b^2])))), -((a + b*Sqrt[1 + c^2/b^2]*Cos[x - ArcTan[c
/b]])/(b*Sqrt[1 + c^2/b^2]*(-1 - a/(b*Sqrt[1 + c^2/b^2]))))]*Sin[x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*Sqrt[(
b*Sqrt[(b^2 + c^2)/b^2] - b*Sqrt[(b^2 + c^2)/b^2]*Cos[x - ArcTan[c/b]])/(a + b*Sqrt[(b^2 + c^2)/b^2])]*Sqrt[a
+ b*Sqrt[(b^2 + c^2)/b^2]*Cos[x - ArcTan[c/b]]]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] + b*Sqrt[(b^2 + c^2)/b^2]*Cos[x
- ArcTan[c/b]])/(-a + b*Sqrt[(b^2 + c^2)/b^2])])) - ((2*b*(a + b*Sqrt[1 + c^2/b^2]*Cos[x - ArcTan[c/b]]))/(b^2
 + c^2) - (c*Sin[x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]))/Sqrt[a + b*Sqrt[1 + c^2/b^2]*Cos[x - ArcTan[c/b]]]))
/c + c*d*(-((c*AppellF1[-1/2, -1/2, -1/2, 1/2, -((a + b*Sqrt[1 + c^2/b^2]*Cos[x - ArcTan[c/b]])/(b*Sqrt[1 + c^
2/b^2]*(1 - a/(b*Sqrt[1 + c^2/b^2])))), -((a + b*Sqrt[1 + c^2/b^2]*Cos[x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*
(-1 - a/(b*Sqrt[1 + c^2/b^2]))))]*Sin[x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] - b
*Sqrt[(b^2 + c^2)/b^2]*Cos[x - ArcTan[c/b]])/(a + b*Sqrt[(b^2 + c^2)/b^2])]*Sqrt[a + b*Sqrt[(b^2 + c^2)/b^2]*C
os[x - ArcTan[c/b]]]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] + b*Sqrt[(b^2 + c^2)/b^2]*Cos[x - ArcTan[c/b]])/(-a + b*Sqr
t[(b^2 + c^2)/b^2])])) - ((2*b*(a + b*Sqrt[1 + c^2/b^2]*Cos[x - ArcTan[c/b]]))/(b^2 + c^2) - (c*Sin[x - ArcTan
[c/b]])/(b*Sqrt[1 + c^2/b^2]))/Sqrt[a + b*Sqrt[1 + c^2/b^2]*Cos[x - ArcTan[c/b]]]) + (a*b^2*e*(-((c*AppellF1[-
1/2, -1/2, -1/2, 1/2, -((a + b*Sqrt[1 + c^2/b^2]*Cos[x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(1 - a/(b*Sqrt[1 +
 c^2/b^2])))), -((a + b*Sqrt[1 + c^2/b^2]*Cos[x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(-1 - a/(b*Sqrt[1 + c^2/b
^2]))))]*Sin[x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] - b*Sqrt[(b^2 + c^2)/b^2]*Co
s[x - ArcTan[c/b]])/(a + b*Sqrt[(b^2 + c^2)/b^2])]*Sqrt[a + b*Sqrt[(b^2 + c^2)/b^2]*Cos[x - ArcTan[c/b]]]*Sqrt
[(b*Sqrt[(b^2 + c^2)/b^2] + b*Sqrt[(b^2 + c^2)/b^2]*Cos[x - ArcTan[c/b]])/(-a + b*Sqrt[(b^2 + c^2)/b^2])])) -
((2*b*(a + b*Sqrt[1 + c^2/b^2]*Cos[x - ArcTan[c/b]]))/(b^2 + c^2) - (c*Sin[x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b
^2]))/Sqrt[a + b*Sqrt[1 + c^2/b^2]*Cos[x - ArcTan[c/b]]]))/(3*c) + (a*c*e*(-((c*AppellF1[-1/2, -1/2, -1/2, 1/2
, -((a + b*Sqrt[1 + c^2/b^2]*Cos[x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(1 - a/(b*Sqrt[1 + c^2/b^2])))), -((a
+ b*Sqrt[1 + c^2/b^2]*Cos[x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(-1 - a/(b*Sqrt[1 + c^2/b^2]))))]*Sin[x - Arc
Tan[c/b]])/(b*Sqrt[1 + c^2/b^2]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] - b*Sqrt[(b^2 + c^2)/b^2]*Cos[x - ArcTan[c/b]])/
(a + b*Sqrt[(b^2 + c^2)/b^2])]*Sqrt[a + b*Sqrt[(b^2 + c^2)/b^2]*Cos[x - ArcTan[c/b]]]*Sqrt[(b*Sqrt[(b^2 + c^2)
/b^2] + b*Sqrt[(b^2 + c^2)/b^2]*Cos[x - ArcTan[c/b]])/(-a + b*Sqrt[(b^2 + c^2)/b^2])])) - ((2*b*(a + b*Sqrt[1
+ c^2/b^2]*Cos[x - ArcTan[c/b]]))/(b^2 + c^2) - (c*Sin[x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]))/Sqrt[a + b*Sqr
t[1 + c^2/b^2]*Cos[x - ArcTan[c/b]]]))/3

________________________________________________________________________________________

fricas [F]  time = 1.18, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (b e \cos \relax (x) + c e \sin \relax (x) + d\right )} \sqrt {b \cos \relax (x) + c \sin \relax (x) + a}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(x)+c*sin(x))^(1/2)*(d+b*e*cos(x)+c*e*sin(x)),x, algorithm="fricas")

[Out]

integral((b*e*cos(x) + c*e*sin(x) + d)*sqrt(b*cos(x) + c*sin(x) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b e \cos \relax (x) + c e \sin \relax (x) + d\right )} \sqrt {b \cos \relax (x) + c \sin \relax (x) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(x)+c*sin(x))^(1/2)*(d+b*e*cos(x)+c*e*sin(x)),x, algorithm="giac")

[Out]

integrate((b*e*cos(x) + c*e*sin(x) + d)*sqrt(b*cos(x) + c*sin(x) + a), x)

________________________________________________________________________________________

maple [B]  time = 0.77, size = 1460, normalized size = 6.38 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(x)+c*sin(x))^(1/2)*(d+b*e*cos(x)+c*e*sin(x)),x)

[Out]

(-(-b^2*sin(x-arctan(-b,c))-c^2*sin(x-arctan(-b,c))-a*(b^2+c^2)^(1/2))*cos(x-arctan(-b,c))^2/(b^2+c^2)^(1/2))^
(1/2)/(b^2+c^2)^(1/2)*(((b^2+c^2)^(1/2)*b^2*e+(b^2+c^2)^(1/2)*c^2*e)*(-2/3/(b^2+c^2)^(1/2)*(cos(x-arctan(-b,c)
)^2*((b^2+c^2)^(1/2)*sin(x-arctan(-b,c))+a))^(1/2)+2/3*(1/(b^2+c^2)^(1/2)*a-1)*((-(b^2+c^2)^(1/2)*sin(x-arctan
(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2)*((-sin(x-arctan(-b,c))+1)*(b^2+c^2)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2)*((
1+sin(x-arctan(-b,c)))*(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2)))^(1/2)/(cos(x-arctan(-b,c))^2*((b^2+c^2)^(1/2)*sin
(x-arctan(-b,c))+a))^(1/2)*EllipticF(((-(b^2+c^2)^(1/2)*sin(x-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2),((a
-(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2))-4/3/(b^2+c^2)^(1/2)*a*(1/(b^2+c^2)^(1/2)*a-1)*((-(b^2+c^2)^(1/2)
*sin(x-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2)*((-sin(x-arctan(-b,c))+1)*(b^2+c^2)^(1/2)/(a+(b^2+c^2)^(1/
2)))^(1/2)*((1+sin(x-arctan(-b,c)))*(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2)))^(1/2)/(cos(x-arctan(-b,c))^2*((b^2+c
^2)^(1/2)*sin(x-arctan(-b,c))+a))^(1/2)*((-1/(b^2+c^2)^(1/2)*a-1)*EllipticE(((-(b^2+c^2)^(1/2)*sin(x-arctan(-b
,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2),((a-(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2))+EllipticF(((-(b^2+c^2)^(1
/2)*sin(x-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2),((a-(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2))))+2*(a
*b^2*e+a*c^2*e+b^2*d+c^2*d)*(1/(b^2+c^2)^(1/2)*a-1)*((-(b^2+c^2)^(1/2)*sin(x-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1
/2)))^(1/2)*((-sin(x-arctan(-b,c))+1)*(b^2+c^2)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2)*((1+sin(x-arctan(-b,c)))*(b^2
+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2)))^(1/2)/(cos(x-arctan(-b,c))^2*((b^2+c^2)^(1/2)*sin(x-arctan(-b,c))+a))^(1/2)*
((-1/(b^2+c^2)^(1/2)*a-1)*EllipticE(((-(b^2+c^2)^(1/2)*sin(x-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2),((a-
(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2))+EllipticF(((-(b^2+c^2)^(1/2)*sin(x-arctan(-b,c))-a)/(-a+(b^2+c^2)
^(1/2)))^(1/2),((a-(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2)))+2*d*a*(b^2+c^2)^(1/2)*(1/(b^2+c^2)^(1/2)*a-1)
*((-(b^2+c^2)^(1/2)*sin(x-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2)*((-sin(x-arctan(-b,c))+1)*(b^2+c^2)^(1/
2)/(a+(b^2+c^2)^(1/2)))^(1/2)*((1+sin(x-arctan(-b,c)))*(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2)))^(1/2)/(-(-b^2*sin
(x-arctan(-b,c))-c^2*sin(x-arctan(-b,c))-a*(b^2+c^2)^(1/2))*cos(x-arctan(-b,c))^2/(b^2+c^2)^(1/2))^(1/2)*Ellip
ticF(((-(b^2+c^2)^(1/2)*sin(x-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2),((a-(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(
1/2)))^(1/2)))/cos(x-arctan(-b,c))/((b^2*sin(x-arctan(-b,c))+c^2*sin(x-arctan(-b,c))+a*(b^2+c^2)^(1/2))/(b^2+c
^2)^(1/2))^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b e \cos \relax (x) + c e \sin \relax (x) + d\right )} \sqrt {b \cos \relax (x) + c \sin \relax (x) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(x)+c*sin(x))^(1/2)*(d+b*e*cos(x)+c*e*sin(x)),x, algorithm="maxima")

[Out]

integrate((b*e*cos(x) + c*e*sin(x) + d)*sqrt(b*cos(x) + c*sin(x) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \sqrt {a+b\,\cos \relax (x)+c\,\sin \relax (x)}\,\left (d+b\,e\,\cos \relax (x)+c\,e\,\sin \relax (x)\right ) \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*cos(x) + c*sin(x))^(1/2)*(d + b*e*cos(x) + c*e*sin(x)),x)

[Out]

int((a + b*cos(x) + c*sin(x))^(1/2)*(d + b*e*cos(x) + c*e*sin(x)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a + b \cos {\relax (x )} + c \sin {\relax (x )}} \left (b e \cos {\relax (x )} + c e \sin {\relax (x )} + d\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(x)+c*sin(x))**(1/2)*(d+b*e*cos(x)+c*e*sin(x)),x)

[Out]

Integral(sqrt(a + b*cos(x) + c*sin(x))*(b*e*cos(x) + c*e*sin(x) + d), x)

________________________________________________________________________________________