3.566 \(\int (a+b \cos (c+d x) \sin (c+d x))^m \, dx\)

Optimal. Leaf size=131 \[ -\frac {\cos (2 c+2 d x) \left (a+\frac {1}{2} b \sin (2 c+2 d x)\right )^m \left (\frac {2 a+b \sin (2 c+2 d x)}{2 a+b}\right )^{-m} F_1\left (\frac {1}{2};\frac {1}{2},-m;\frac {3}{2};\frac {1}{2} (1-\sin (2 c+2 d x)),\frac {b (1-\sin (2 c+2 d x))}{2 a+b}\right )}{\sqrt {2} d \sqrt {\sin (2 c+2 d x)+1}} \]

[Out]

-1/2*AppellF1(1/2,-m,1/2,3/2,b*(1-sin(2*d*x+2*c))/(2*a+b),1/2-1/2*sin(2*d*x+2*c))*cos(2*d*x+2*c)*(a+1/2*b*sin(
2*d*x+2*c))^m/d/(((2*a+b*sin(2*d*x+2*c))/(2*a+b))^m)*2^(1/2)/(1+sin(2*d*x+2*c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 131, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {2666, 2665, 139, 138} \[ -\frac {\cos (2 c+2 d x) \left (a+\frac {1}{2} b \sin (2 c+2 d x)\right )^m \left (\frac {2 a+b \sin (2 c+2 d x)}{2 a+b}\right )^{-m} F_1\left (\frac {1}{2};\frac {1}{2},-m;\frac {3}{2};\frac {1}{2} (1-\sin (2 c+2 d x)),\frac {b (1-\sin (2 c+2 d x))}{2 a+b}\right )}{\sqrt {2} d \sqrt {\sin (2 c+2 d x)+1}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x]*Sin[c + d*x])^m,x]

[Out]

-((AppellF1[1/2, 1/2, -m, 3/2, (1 - Sin[2*c + 2*d*x])/2, (b*(1 - Sin[2*c + 2*d*x]))/(2*a + b)]*Cos[2*c + 2*d*x
]*(a + (b*Sin[2*c + 2*d*x])/2)^m)/(Sqrt[2]*d*Sqrt[1 + Sin[2*c + 2*d*x]]*((2*a + b*Sin[2*c + 2*d*x])/(2*a + b))
^m))

Rule 138

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[((a + b*x)
^(m + 1)*AppellF1[m + 1, -n, -p, m + 2, -((d*(a + b*x))/(b*c - a*d)), -((f*(a + b*x))/(b*e - a*f))])/(b*(m + 1
)*(b/(b*c - a*d))^n*(b/(b*e - a*f))^p), x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m] &&  !Inte
gerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !(GtQ[d/(d*a - c*b), 0] && GtQ[
d/(d*e - c*f), 0] && SimplerQ[c + d*x, a + b*x]) &&  !(GtQ[f/(f*a - e*b), 0] && GtQ[f/(f*c - e*d), 0] && Simpl
erQ[e + f*x, a + b*x])

Rule 139

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(e + f*x)^
FracPart[p]/((b/(b*e - a*f))^IntPart[p]*((b*(e + f*x))/(b*e - a*f))^FracPart[p]), Int[(a + b*x)^m*(c + d*x)^n*
((b*e)/(b*e - a*f) + (b*f*x)/(b*e - a*f))^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m]
&&  !IntegerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] &&  !GtQ[b/(b*e - a*f), 0]

Rule 2665

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[Cos[c + d*x]/(d*Sqrt[1 + Sin[c + d*x]]*Sqrt
[1 - Sin[c + d*x]]), Subst[Int[(a + b*x)^n/(Sqrt[1 + x]*Sqrt[1 - x]), x], x, Sin[c + d*x]], x] /; FreeQ[{a, b,
 c, d, n}, x] && NeQ[a^2 - b^2, 0] &&  !IntegerQ[2*n]

Rule 2666

Int[((a_) + cos[(c_.) + (d_.)*(x_)]*(b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Int[(a + (b*Sin[2*c + 2*
d*x])/2)^n, x] /; FreeQ[{a, b, c, d, n}, x]

Rubi steps

\begin {align*} \int (a+b \cos (c+d x) \sin (c+d x))^m \, dx &=\int \left (a+\frac {1}{2} b \sin (2 c+2 d x)\right )^m \, dx\\ &=\frac {\cos (2 c+2 d x) \operatorname {Subst}\left (\int \frac {\left (a+\frac {b x}{2}\right )^m}{\sqrt {1-x} \sqrt {1+x}} \, dx,x,\sin (2 c+2 d x)\right )}{2 d \sqrt {1-\sin (2 c+2 d x)} \sqrt {1+\sin (2 c+2 d x)}}\\ &=\frac {\left (\cos (2 c+2 d x) \left (a+\frac {1}{2} b \sin (2 c+2 d x)\right )^m \left (-\frac {a+\frac {1}{2} b \sin (2 c+2 d x)}{-a-\frac {b}{2}}\right )^{-m}\right ) \operatorname {Subst}\left (\int \frac {\left (-\frac {a}{-a-\frac {b}{2}}-\frac {b x}{2 \left (-a-\frac {b}{2}\right )}\right )^m}{\sqrt {1-x} \sqrt {1+x}} \, dx,x,\sin (2 c+2 d x)\right )}{2 d \sqrt {1-\sin (2 c+2 d x)} \sqrt {1+\sin (2 c+2 d x)}}\\ &=-\frac {F_1\left (\frac {1}{2};\frac {1}{2},-m;\frac {3}{2};\frac {1}{2} (1-\sin (2 c+2 d x)),\frac {b (1-\sin (2 c+2 d x))}{2 a+b}\right ) \cos (2 c+2 d x) \left (a+\frac {1}{2} b \sin (2 c+2 d x)\right )^m \left (\frac {2 a+b \sin (2 c+2 d x)}{2 a+b}\right )^{-m}}{\sqrt {2} d \sqrt {1+\sin (2 c+2 d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.59, size = 145, normalized size = 1.11 \[ \frac {\sec (2 (c+d x)) \sqrt {-\frac {b (\sin (2 (c+d x))-1)}{2 a+b}} \sqrt {\frac {b (\sin (2 (c+d x))+1)}{b-2 a}} \left (a+\frac {1}{2} b \sin (2 (c+d x))\right )^{m+1} F_1\left (m+1;\frac {1}{2},\frac {1}{2};m+2;\frac {2 a+b \sin (2 (c+d x))}{2 a-b},\frac {2 a+b \sin (2 (c+d x))}{2 a+b}\right )}{b d (m+1)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*Cos[c + d*x]*Sin[c + d*x])^m,x]

[Out]

(AppellF1[1 + m, 1/2, 1/2, 2 + m, (2*a + b*Sin[2*(c + d*x)])/(2*a - b), (2*a + b*Sin[2*(c + d*x)])/(2*a + b)]*
Sec[2*(c + d*x)]*Sqrt[-((b*(-1 + Sin[2*(c + d*x)]))/(2*a + b))]*Sqrt[(b*(1 + Sin[2*(c + d*x)]))/(-2*a + b)]*(a
 + (b*Sin[2*(c + d*x)])/2)^(1 + m))/(b*d*(1 + m))

________________________________________________________________________________________

fricas [F]  time = 0.91, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (b \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a\right )}^{m}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c)*sin(d*x+c))^m,x, algorithm="fricas")

[Out]

integral((b*cos(d*x + c)*sin(d*x + c) + a)^m, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a\right )}^{m}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c)*sin(d*x+c))^m,x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c)*sin(d*x + c) + a)^m, x)

________________________________________________________________________________________

maple [F]  time = 1.11, size = 0, normalized size = 0.00 \[ \int \left (a +b \cos \left (d x +c \right ) \sin \left (d x +c \right )\right )^{m}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c)*sin(d*x+c))^m,x)

[Out]

int((a+b*cos(d*x+c)*sin(d*x+c))^m,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a\right )}^{m}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c)*sin(d*x+c))^m,x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c)*sin(d*x + c) + a)^m, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (a+b\,\cos \left (c+d\,x\right )\,\sin \left (c+d\,x\right )\right )}^m \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*cos(c + d*x)*sin(c + d*x))^m,x)

[Out]

int((a + b*cos(c + d*x)*sin(c + d*x))^m, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c)*sin(d*x+c))**m,x)

[Out]

Timed out

________________________________________________________________________________________