3.580 \(\int \frac {x^2}{a+b \cos (x) \sin (x)} \, dx\)

Optimal. Leaf size=340 \[ -\frac {x \text {Li}_2\left (\frac {i b e^{2 i x}}{2 a-\sqrt {4 a^2-b^2}}\right )}{\sqrt {4 a^2-b^2}}+\frac {x \text {Li}_2\left (\frac {i b e^{2 i x}}{2 a+\sqrt {4 a^2-b^2}}\right )}{\sqrt {4 a^2-b^2}}-\frac {i \text {Li}_3\left (\frac {i b e^{2 i x}}{2 a-\sqrt {4 a^2-b^2}}\right )}{2 \sqrt {4 a^2-b^2}}+\frac {i \text {Li}_3\left (\frac {i b e^{2 i x}}{2 a+\sqrt {4 a^2-b^2}}\right )}{2 \sqrt {4 a^2-b^2}}-\frac {i x^2 \log \left (1-\frac {i b e^{2 i x}}{2 a-\sqrt {4 a^2-b^2}}\right )}{\sqrt {4 a^2-b^2}}+\frac {i x^2 \log \left (1-\frac {i b e^{2 i x}}{\sqrt {4 a^2-b^2}+2 a}\right )}{\sqrt {4 a^2-b^2}} \]

[Out]

-I*x^2*ln(1-I*b*exp(2*I*x)/(2*a-(4*a^2-b^2)^(1/2)))/(4*a^2-b^2)^(1/2)+I*x^2*ln(1-I*b*exp(2*I*x)/(2*a+(4*a^2-b^
2)^(1/2)))/(4*a^2-b^2)^(1/2)-x*polylog(2,I*b*exp(2*I*x)/(2*a-(4*a^2-b^2)^(1/2)))/(4*a^2-b^2)^(1/2)+x*polylog(2
,I*b*exp(2*I*x)/(2*a+(4*a^2-b^2)^(1/2)))/(4*a^2-b^2)^(1/2)-1/2*I*polylog(3,I*b*exp(2*I*x)/(2*a-(4*a^2-b^2)^(1/
2)))/(4*a^2-b^2)^(1/2)+1/2*I*polylog(3,I*b*exp(2*I*x)/(2*a+(4*a^2-b^2)^(1/2)))/(4*a^2-b^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.54, antiderivative size = 340, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 7, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {4584, 3323, 2264, 2190, 2531, 2282, 6589} \[ -\frac {x \text {PolyLog}\left (2,\frac {i b e^{2 i x}}{2 a-\sqrt {4 a^2-b^2}}\right )}{\sqrt {4 a^2-b^2}}+\frac {x \text {PolyLog}\left (2,\frac {i b e^{2 i x}}{\sqrt {4 a^2-b^2}+2 a}\right )}{\sqrt {4 a^2-b^2}}-\frac {i \text {PolyLog}\left (3,\frac {i b e^{2 i x}}{2 a-\sqrt {4 a^2-b^2}}\right )}{2 \sqrt {4 a^2-b^2}}+\frac {i \text {PolyLog}\left (3,\frac {i b e^{2 i x}}{\sqrt {4 a^2-b^2}+2 a}\right )}{2 \sqrt {4 a^2-b^2}}-\frac {i x^2 \log \left (1-\frac {i b e^{2 i x}}{2 a-\sqrt {4 a^2-b^2}}\right )}{\sqrt {4 a^2-b^2}}+\frac {i x^2 \log \left (1-\frac {i b e^{2 i x}}{\sqrt {4 a^2-b^2}+2 a}\right )}{\sqrt {4 a^2-b^2}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/(a + b*Cos[x]*Sin[x]),x]

[Out]

((-I)*x^2*Log[1 - (I*b*E^((2*I)*x))/(2*a - Sqrt[4*a^2 - b^2])])/Sqrt[4*a^2 - b^2] + (I*x^2*Log[1 - (I*b*E^((2*
I)*x))/(2*a + Sqrt[4*a^2 - b^2])])/Sqrt[4*a^2 - b^2] - (x*PolyLog[2, (I*b*E^((2*I)*x))/(2*a - Sqrt[4*a^2 - b^2
])])/Sqrt[4*a^2 - b^2] + (x*PolyLog[2, (I*b*E^((2*I)*x))/(2*a + Sqrt[4*a^2 - b^2])])/Sqrt[4*a^2 - b^2] - ((I/2
)*PolyLog[3, (I*b*E^((2*I)*x))/(2*a - Sqrt[4*a^2 - b^2])])/Sqrt[4*a^2 - b^2] + ((I/2)*PolyLog[3, (I*b*E^((2*I)
*x))/(2*a + Sqrt[4*a^2 - b^2])])/Sqrt[4*a^2 - b^2]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2264

Int[((F_)^(u_)*((f_.) + (g_.)*(x_))^(m_.))/((a_.) + (b_.)*(F_)^(u_) + (c_.)*(F_)^(v_)), x_Symbol] :> With[{q =
 Rt[b^2 - 4*a*c, 2]}, Dist[(2*c)/q, Int[((f + g*x)^m*F^u)/(b - q + 2*c*F^u), x], x] - Dist[(2*c)/q, Int[((f +
g*x)^m*F^u)/(b + q + 2*c*F^u), x], x]] /; FreeQ[{F, a, b, c, f, g}, x] && EqQ[v, 2*u] && LinearQ[u, x] && NeQ[
b^2 - 4*a*c, 0] && IGtQ[m, 0]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 2531

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> -Simp[((
f + g*x)^m*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)])/(b*c*n*Log[F]), x] + Dist[(g*m)/(b*c*n*Log[F]), Int[(f + g*x)
^(m - 1)*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 3323

Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[2, Int[((c + d*x)^m*E
^(I*(e + f*x)))/(I*b + 2*a*E^(I*(e + f*x)) - I*b*E^(2*I*(e + f*x))), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
 NeQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 4584

Int[((e_.) + (f_.)*(x_))^(m_.)*((a_) + Cos[(c_.) + (d_.)*(x_)]*(b_.)*Sin[(c_.) + (d_.)*(x_)])^(n_.), x_Symbol]
 :> Int[(e + f*x)^m*(a + (b*Sin[2*c + 2*d*x])/2)^n, x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rule 6589

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rubi steps

\begin {align*} \int \frac {x^2}{a+b \cos (x) \sin (x)} \, dx &=\int \frac {x^2}{a+\frac {1}{2} b \sin (2 x)} \, dx\\ &=2 \int \frac {e^{2 i x} x^2}{\frac {i b}{2}+2 a e^{2 i x}-\frac {1}{2} i b e^{4 i x}} \, dx\\ &=-\frac {(2 i b) \int \frac {e^{2 i x} x^2}{2 a-\sqrt {4 a^2-b^2}-i b e^{2 i x}} \, dx}{\sqrt {4 a^2-b^2}}+\frac {(2 i b) \int \frac {e^{2 i x} x^2}{2 a+\sqrt {4 a^2-b^2}-i b e^{2 i x}} \, dx}{\sqrt {4 a^2-b^2}}\\ &=-\frac {i x^2 \log \left (1-\frac {i b e^{2 i x}}{2 a-\sqrt {4 a^2-b^2}}\right )}{\sqrt {4 a^2-b^2}}+\frac {i x^2 \log \left (1-\frac {i b e^{2 i x}}{2 a+\sqrt {4 a^2-b^2}}\right )}{\sqrt {4 a^2-b^2}}+\frac {(2 i) \int x \log \left (1-\frac {i b e^{2 i x}}{2 a-\sqrt {4 a^2-b^2}}\right ) \, dx}{\sqrt {4 a^2-b^2}}-\frac {(2 i) \int x \log \left (1-\frac {i b e^{2 i x}}{2 a+\sqrt {4 a^2-b^2}}\right ) \, dx}{\sqrt {4 a^2-b^2}}\\ &=-\frac {i x^2 \log \left (1-\frac {i b e^{2 i x}}{2 a-\sqrt {4 a^2-b^2}}\right )}{\sqrt {4 a^2-b^2}}+\frac {i x^2 \log \left (1-\frac {i b e^{2 i x}}{2 a+\sqrt {4 a^2-b^2}}\right )}{\sqrt {4 a^2-b^2}}-\frac {x \text {Li}_2\left (\frac {i b e^{2 i x}}{2 a-\sqrt {4 a^2-b^2}}\right )}{\sqrt {4 a^2-b^2}}+\frac {x \text {Li}_2\left (\frac {i b e^{2 i x}}{2 a+\sqrt {4 a^2-b^2}}\right )}{\sqrt {4 a^2-b^2}}+\frac {\int \text {Li}_2\left (\frac {i b e^{2 i x}}{2 a-\sqrt {4 a^2-b^2}}\right ) \, dx}{\sqrt {4 a^2-b^2}}-\frac {\int \text {Li}_2\left (\frac {i b e^{2 i x}}{2 a+\sqrt {4 a^2-b^2}}\right ) \, dx}{\sqrt {4 a^2-b^2}}\\ &=-\frac {i x^2 \log \left (1-\frac {i b e^{2 i x}}{2 a-\sqrt {4 a^2-b^2}}\right )}{\sqrt {4 a^2-b^2}}+\frac {i x^2 \log \left (1-\frac {i b e^{2 i x}}{2 a+\sqrt {4 a^2-b^2}}\right )}{\sqrt {4 a^2-b^2}}-\frac {x \text {Li}_2\left (\frac {i b e^{2 i x}}{2 a-\sqrt {4 a^2-b^2}}\right )}{\sqrt {4 a^2-b^2}}+\frac {x \text {Li}_2\left (\frac {i b e^{2 i x}}{2 a+\sqrt {4 a^2-b^2}}\right )}{\sqrt {4 a^2-b^2}}-\frac {i \operatorname {Subst}\left (\int \frac {\text {Li}_2\left (-\frac {i b x}{-2 a+\sqrt {4 a^2-b^2}}\right )}{x} \, dx,x,e^{2 i x}\right )}{2 \sqrt {4 a^2-b^2}}+\frac {i \operatorname {Subst}\left (\int \frac {\text {Li}_2\left (\frac {i b x}{2 a+\sqrt {4 a^2-b^2}}\right )}{x} \, dx,x,e^{2 i x}\right )}{2 \sqrt {4 a^2-b^2}}\\ &=-\frac {i x^2 \log \left (1-\frac {i b e^{2 i x}}{2 a-\sqrt {4 a^2-b^2}}\right )}{\sqrt {4 a^2-b^2}}+\frac {i x^2 \log \left (1-\frac {i b e^{2 i x}}{2 a+\sqrt {4 a^2-b^2}}\right )}{\sqrt {4 a^2-b^2}}-\frac {x \text {Li}_2\left (\frac {i b e^{2 i x}}{2 a-\sqrt {4 a^2-b^2}}\right )}{\sqrt {4 a^2-b^2}}+\frac {x \text {Li}_2\left (\frac {i b e^{2 i x}}{2 a+\sqrt {4 a^2-b^2}}\right )}{\sqrt {4 a^2-b^2}}-\frac {i \text {Li}_3\left (\frac {i b e^{2 i x}}{2 a-\sqrt {4 a^2-b^2}}\right )}{2 \sqrt {4 a^2-b^2}}+\frac {i \text {Li}_3\left (\frac {i b e^{2 i x}}{2 a+\sqrt {4 a^2-b^2}}\right )}{2 \sqrt {4 a^2-b^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.72, size = 256, normalized size = 0.75 \[ -\frac {i \left (-2 i x \text {Li}_2\left (-\frac {i b e^{2 i x}}{\sqrt {4 a^2-b^2}-2 a}\right )+2 i x \text {Li}_2\left (\frac {i b e^{2 i x}}{2 a+\sqrt {4 a^2-b^2}}\right )+\text {Li}_3\left (-\frac {i b e^{2 i x}}{\sqrt {4 a^2-b^2}-2 a}\right )-\text {Li}_3\left (\frac {i b e^{2 i x}}{2 a+\sqrt {4 a^2-b^2}}\right )+2 x^2 \log \left (1+\frac {i b e^{2 i x}}{\sqrt {4 a^2-b^2}-2 a}\right )-2 x^2 \log \left (1-\frac {i b e^{2 i x}}{\sqrt {4 a^2-b^2}+2 a}\right )\right )}{2 \sqrt {4 a^2-b^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/(a + b*Cos[x]*Sin[x]),x]

[Out]

((-1/2*I)*(2*x^2*Log[1 + (I*b*E^((2*I)*x))/(-2*a + Sqrt[4*a^2 - b^2])] - 2*x^2*Log[1 - (I*b*E^((2*I)*x))/(2*a
+ Sqrt[4*a^2 - b^2])] - (2*I)*x*PolyLog[2, ((-I)*b*E^((2*I)*x))/(-2*a + Sqrt[4*a^2 - b^2])] + (2*I)*x*PolyLog[
2, (I*b*E^((2*I)*x))/(2*a + Sqrt[4*a^2 - b^2])] + PolyLog[3, ((-I)*b*E^((2*I)*x))/(-2*a + Sqrt[4*a^2 - b^2])]
- PolyLog[3, (I*b*E^((2*I)*x))/(2*a + Sqrt[4*a^2 - b^2])]))/Sqrt[4*a^2 - b^2]

________________________________________________________________________________________

fricas [C]  time = 2.28, size = 2506, normalized size = 7.37 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b*cos(x)*sin(x)),x, algorithm="fricas")

[Out]

-1/4*(2*b*x^2*sqrt(-(4*a^2 - b^2)/b^2)*log(1/2*((4*I*a*cos(x) + 4*a*sin(x) - 2*(b*cos(x) - I*b*sin(x))*sqrt(-(
4*a^2 - b^2)/b^2))*sqrt((b*sqrt(-(4*a^2 - b^2)/b^2) + 2*I*a)/b) + 2*b)/b) + 2*b*x^2*sqrt(-(4*a^2 - b^2)/b^2)*l
og(1/2*((-4*I*a*cos(x) - 4*a*sin(x) + 2*(b*cos(x) - I*b*sin(x))*sqrt(-(4*a^2 - b^2)/b^2))*sqrt((b*sqrt(-(4*a^2
 - b^2)/b^2) + 2*I*a)/b) + 2*b)/b) - 2*b*x^2*sqrt(-(4*a^2 - b^2)/b^2)*log(-((2*I*a*cos(x) - 2*a*sin(x) - (b*co
s(x) + I*b*sin(x))*sqrt(-(4*a^2 - b^2)/b^2))*sqrt(-(b*sqrt(-(4*a^2 - b^2)/b^2) + 2*I*a)/b) - b)/b) - 2*b*x^2*s
qrt(-(4*a^2 - b^2)/b^2)*log(-((-2*I*a*cos(x) + 2*a*sin(x) + (b*cos(x) + I*b*sin(x))*sqrt(-(4*a^2 - b^2)/b^2))*
sqrt(-(b*sqrt(-(4*a^2 - b^2)/b^2) + 2*I*a)/b) - b)/b) + 2*b*x^2*sqrt(-(4*a^2 - b^2)/b^2)*log(-((2*I*a*cos(x) -
 2*a*sin(x) + (b*cos(x) + I*b*sin(x))*sqrt(-(4*a^2 - b^2)/b^2))*sqrt((b*sqrt(-(4*a^2 - b^2)/b^2) - 2*I*a)/b) -
 b)/b) + 2*b*x^2*sqrt(-(4*a^2 - b^2)/b^2)*log(-((-2*I*a*cos(x) + 2*a*sin(x) - (b*cos(x) + I*b*sin(x))*sqrt(-(4
*a^2 - b^2)/b^2))*sqrt((b*sqrt(-(4*a^2 - b^2)/b^2) - 2*I*a)/b) - b)/b) - 2*b*x^2*sqrt(-(4*a^2 - b^2)/b^2)*log(
1/2*((4*I*a*cos(x) + 4*a*sin(x) + 2*(b*cos(x) - I*b*sin(x))*sqrt(-(4*a^2 - b^2)/b^2))*sqrt(-(b*sqrt(-(4*a^2 -
b^2)/b^2) - 2*I*a)/b) + 2*b)/b) - 2*b*x^2*sqrt(-(4*a^2 - b^2)/b^2)*log(1/2*((-4*I*a*cos(x) - 4*a*sin(x) - 2*(b
*cos(x) - I*b*sin(x))*sqrt(-(4*a^2 - b^2)/b^2))*sqrt(-(b*sqrt(-(4*a^2 - b^2)/b^2) - 2*I*a)/b) + 2*b)/b) + 4*I*
b*x*sqrt(-(4*a^2 - b^2)/b^2)*dilog(-1/2*((4*I*a*cos(x) + 4*a*sin(x) - 2*(b*cos(x) - I*b*sin(x))*sqrt(-(4*a^2 -
 b^2)/b^2))*sqrt((b*sqrt(-(4*a^2 - b^2)/b^2) + 2*I*a)/b) + 2*b)/b + 1) + 4*I*b*x*sqrt(-(4*a^2 - b^2)/b^2)*dilo
g(-1/2*((-4*I*a*cos(x) - 4*a*sin(x) + 2*(b*cos(x) - I*b*sin(x))*sqrt(-(4*a^2 - b^2)/b^2))*sqrt((b*sqrt(-(4*a^2
 - b^2)/b^2) + 2*I*a)/b) + 2*b)/b + 1) + 4*I*b*x*sqrt(-(4*a^2 - b^2)/b^2)*dilog(((2*I*a*cos(x) - 2*a*sin(x) -
(b*cos(x) + I*b*sin(x))*sqrt(-(4*a^2 - b^2)/b^2))*sqrt(-(b*sqrt(-(4*a^2 - b^2)/b^2) + 2*I*a)/b) - b)/b + 1) +
4*I*b*x*sqrt(-(4*a^2 - b^2)/b^2)*dilog(((-2*I*a*cos(x) + 2*a*sin(x) + (b*cos(x) + I*b*sin(x))*sqrt(-(4*a^2 - b
^2)/b^2))*sqrt(-(b*sqrt(-(4*a^2 - b^2)/b^2) + 2*I*a)/b) - b)/b + 1) - 4*I*b*x*sqrt(-(4*a^2 - b^2)/b^2)*dilog((
(2*I*a*cos(x) - 2*a*sin(x) + (b*cos(x) + I*b*sin(x))*sqrt(-(4*a^2 - b^2)/b^2))*sqrt((b*sqrt(-(4*a^2 - b^2)/b^2
) - 2*I*a)/b) - b)/b + 1) - 4*I*b*x*sqrt(-(4*a^2 - b^2)/b^2)*dilog(((-2*I*a*cos(x) + 2*a*sin(x) - (b*cos(x) +
I*b*sin(x))*sqrt(-(4*a^2 - b^2)/b^2))*sqrt((b*sqrt(-(4*a^2 - b^2)/b^2) - 2*I*a)/b) - b)/b + 1) - 4*I*b*x*sqrt(
-(4*a^2 - b^2)/b^2)*dilog(-1/2*((4*I*a*cos(x) + 4*a*sin(x) + 2*(b*cos(x) - I*b*sin(x))*sqrt(-(4*a^2 - b^2)/b^2
))*sqrt(-(b*sqrt(-(4*a^2 - b^2)/b^2) - 2*I*a)/b) + 2*b)/b + 1) - 4*I*b*x*sqrt(-(4*a^2 - b^2)/b^2)*dilog(-1/2*(
(-4*I*a*cos(x) - 4*a*sin(x) - 2*(b*cos(x) - I*b*sin(x))*sqrt(-(4*a^2 - b^2)/b^2))*sqrt(-(b*sqrt(-(4*a^2 - b^2)
/b^2) - 2*I*a)/b) + 2*b)/b + 1) + 4*b*sqrt(-(4*a^2 - b^2)/b^2)*polylog(3, 1/2*(4*I*a*cos(x) + 4*a*sin(x) - 2*(
b*cos(x) - I*b*sin(x))*sqrt(-(4*a^2 - b^2)/b^2))*sqrt((b*sqrt(-(4*a^2 - b^2)/b^2) + 2*I*a)/b)/b) + 4*b*sqrt(-(
4*a^2 - b^2)/b^2)*polylog(3, 1/2*(-4*I*a*cos(x) - 4*a*sin(x) + 2*(b*cos(x) - I*b*sin(x))*sqrt(-(4*a^2 - b^2)/b
^2))*sqrt((b*sqrt(-(4*a^2 - b^2)/b^2) + 2*I*a)/b)/b) - 4*b*sqrt(-(4*a^2 - b^2)/b^2)*polylog(3, -(2*I*a*cos(x)
- 2*a*sin(x) - (b*cos(x) + I*b*sin(x))*sqrt(-(4*a^2 - b^2)/b^2))*sqrt(-(b*sqrt(-(4*a^2 - b^2)/b^2) + 2*I*a)/b)
/b) - 4*b*sqrt(-(4*a^2 - b^2)/b^2)*polylog(3, -(-2*I*a*cos(x) + 2*a*sin(x) + (b*cos(x) + I*b*sin(x))*sqrt(-(4*
a^2 - b^2)/b^2))*sqrt(-(b*sqrt(-(4*a^2 - b^2)/b^2) + 2*I*a)/b)/b) + 4*b*sqrt(-(4*a^2 - b^2)/b^2)*polylog(3, -(
2*I*a*cos(x) - 2*a*sin(x) + (b*cos(x) + I*b*sin(x))*sqrt(-(4*a^2 - b^2)/b^2))*sqrt((b*sqrt(-(4*a^2 - b^2)/b^2)
 - 2*I*a)/b)/b) + 4*b*sqrt(-(4*a^2 - b^2)/b^2)*polylog(3, -(-2*I*a*cos(x) + 2*a*sin(x) - (b*cos(x) + I*b*sin(x
))*sqrt(-(4*a^2 - b^2)/b^2))*sqrt((b*sqrt(-(4*a^2 - b^2)/b^2) - 2*I*a)/b)/b) - 4*b*sqrt(-(4*a^2 - b^2)/b^2)*po
lylog(3, 1/2*(4*I*a*cos(x) + 4*a*sin(x) + 2*(b*cos(x) - I*b*sin(x))*sqrt(-(4*a^2 - b^2)/b^2))*sqrt(-(b*sqrt(-(
4*a^2 - b^2)/b^2) - 2*I*a)/b)/b) - 4*b*sqrt(-(4*a^2 - b^2)/b^2)*polylog(3, 1/2*(-4*I*a*cos(x) - 4*a*sin(x) - 2
*(b*cos(x) - I*b*sin(x))*sqrt(-(4*a^2 - b^2)/b^2))*sqrt(-(b*sqrt(-(4*a^2 - b^2)/b^2) - 2*I*a)/b)/b))/(4*a^2 -
b^2)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2}}{b \cos \relax (x) \sin \relax (x) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b*cos(x)*sin(x)),x, algorithm="giac")

[Out]

integrate(x^2/(b*cos(x)*sin(x) + a), x)

________________________________________________________________________________________

maple [B]  time = 0.23, size = 1782, normalized size = 5.24 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(a+b*cos(x)*sin(x)),x)

[Out]

8/3/(8*a^2-2*b^2)/(-2*I*a+(-(2*a-b)*(2*a+b))^(1/2))*(-(2*a-b)*(2*a+b))^(1/2)*a*x^3+2*I/(8*a^2-2*b^2)/(-2*I*a+(
-(2*a-b)*(2*a+b))^(1/2))*polylog(2,b*exp(2*I*x)/(-2*I*a+(-(2*a-b)*(2*a+b))^(1/2)))*b^2*x-8*I/(8*a^2-2*b^2)/(-2
*I*a+(-(2*a-b)*(2*a+b))^(1/2))*polylog(2,b*exp(2*I*x)/(-2*I*a+(-(2*a-b)*(2*a+b))^(1/2)))*a^2*x+2*I/(8*a^2-2*b^
2)/(-2*I*a-(-(2*a-b)*(2*a+b))^(1/2))*polylog(2,b*exp(2*I*x)/(-2*I*a-(-(2*a-b)*(2*a+b))^(1/2)))*b^2*x+8/(8*a^2-
2*b^2)/(-2*I*a+(-(2*a-b)*(2*a+b))^(1/2))*ln(1-b*exp(2*I*x)/(-2*I*a+(-(2*a-b)*(2*a+b))^(1/2)))*a^2*x^2-2/(8*a^2
-2*b^2)/(-2*I*a+(-(2*a-b)*(2*a+b))^(1/2))*ln(1-b*exp(2*I*x)/(-2*I*a+(-(2*a-b)*(2*a+b))^(1/2)))*b^2*x^2+4/(8*a^
2-2*b^2)/(-2*I*a+(-(2*a-b)*(2*a+b))^(1/2))*(-(2*a-b)*(2*a+b))^(1/2)*polylog(2,b*exp(2*I*x)/(-2*I*a+(-(2*a-b)*(
2*a+b))^(1/2)))*a*x-4*I/(8*a^2-2*b^2)/(-2*I*a-(-(2*a-b)*(2*a+b))^(1/2))*ln(1-b*exp(2*I*x)/(-2*I*a-(-(2*a-b)*(2
*a+b))^(1/2)))*(-(2*a-b)*(2*a+b))^(1/2)*a*x^2+2*I/(8*a^2-2*b^2)/(-2*I*a+(-(2*a-b)*(2*a+b))^(1/2))*polylog(3,b*
exp(2*I*x)/(-2*I*a+(-(2*a-b)*(2*a+b))^(1/2)))*(-(2*a-b)*(2*a+b))^(1/2)*a-16/3*I/(8*a^2-2*b^2)/(-2*I*a-(-(2*a-b
)*(2*a+b))^(1/2))*a^2*x^3+4/(8*a^2-2*b^2)/(-2*I*a+(-(2*a-b)*(2*a+b))^(1/2))*polylog(3,b*exp(2*I*x)/(-2*I*a+(-(
2*a-b)*(2*a+b))^(1/2)))*a^2-1/(8*a^2-2*b^2)/(-2*I*a+(-(2*a-b)*(2*a+b))^(1/2))*polylog(3,b*exp(2*I*x)/(-2*I*a+(
-(2*a-b)*(2*a+b))^(1/2)))*b^2-8/3/(8*a^2-2*b^2)/(-2*I*a-(-(2*a-b)*(2*a+b))^(1/2))*(-(2*a-b)*(2*a+b))^(1/2)*a*x
^3-16/3*I/(8*a^2-2*b^2)/(-2*I*a+(-(2*a-b)*(2*a+b))^(1/2))*a^2*x^3+4/3*I/(8*a^2-2*b^2)/(-2*I*a-(-(2*a-b)*(2*a+b
))^(1/2))*b^2*x^3-8*I/(8*a^2-2*b^2)/(-2*I*a-(-(2*a-b)*(2*a+b))^(1/2))*polylog(2,b*exp(2*I*x)/(-2*I*a-(-(2*a-b)
*(2*a+b))^(1/2)))*a^2*x+8/(8*a^2-2*b^2)/(-2*I*a-(-(2*a-b)*(2*a+b))^(1/2))*ln(1-b*exp(2*I*x)/(-2*I*a-(-(2*a-b)*
(2*a+b))^(1/2)))*a^2*x^2-2/(8*a^2-2*b^2)/(-2*I*a-(-(2*a-b)*(2*a+b))^(1/2))*ln(1-b*exp(2*I*x)/(-2*I*a-(-(2*a-b)
*(2*a+b))^(1/2)))*b^2*x^2-4/(8*a^2-2*b^2)/(-2*I*a-(-(2*a-b)*(2*a+b))^(1/2))*polylog(2,b*exp(2*I*x)/(-2*I*a-(-(
2*a-b)*(2*a+b))^(1/2)))*(-(2*a-b)*(2*a+b))^(1/2)*a*x+4/3*I/(8*a^2-2*b^2)/(-2*I*a+(-(2*a-b)*(2*a+b))^(1/2))*b^2
*x^3-2*I/(8*a^2-2*b^2)/(-2*I*a-(-(2*a-b)*(2*a+b))^(1/2))*polylog(3,b*exp(2*I*x)/(-2*I*a-(-(2*a-b)*(2*a+b))^(1/
2)))*(-(2*a-b)*(2*a+b))^(1/2)*a+4*I/(8*a^2-2*b^2)/(-2*I*a+(-(2*a-b)*(2*a+b))^(1/2))*(-(2*a-b)*(2*a+b))^(1/2)*l
n(1-b*exp(2*I*x)/(-2*I*a+(-(2*a-b)*(2*a+b))^(1/2)))*a*x^2+4/(8*a^2-2*b^2)/(-2*I*a-(-(2*a-b)*(2*a+b))^(1/2))*po
lylog(3,b*exp(2*I*x)/(-2*I*a-(-(2*a-b)*(2*a+b))^(1/2)))*a^2-1/(8*a^2-2*b^2)/(-2*I*a-(-(2*a-b)*(2*a+b))^(1/2))*
polylog(3,b*exp(2*I*x)/(-2*I*a-(-(2*a-b)*(2*a+b))^(1/2)))*b^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2}}{b \cos \relax (x) \sin \relax (x) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b*cos(x)*sin(x)),x, algorithm="maxima")

[Out]

integrate(x^2/(b*cos(x)*sin(x) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {x^2}{a+b\,\cos \relax (x)\,\sin \relax (x)} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(a + b*cos(x)*sin(x)),x)

[Out]

int(x^2/(a + b*cos(x)*sin(x)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(a+b*cos(x)*sin(x)),x)

[Out]

Timed out

________________________________________________________________________________________