3.636 \(\int \frac {\cos ^3(x) \cos (2 x)}{(\sin ^2(x)-\sin (2 x)) \sin ^{\frac {5}{2}}(2 x)} \, dx\)

Optimal. Leaf size=95 \[ \frac {\cos ^5(x)}{5 \sin ^{\frac {5}{2}}(2 x)}+\frac {\sin (x) \cos ^4(x)}{6 \sin ^{\frac {5}{2}}(2 x)}-\frac {3 \sin ^2(x) \cos ^3(x)}{4 \sin ^{\frac {5}{2}}(2 x)}+\frac {3 \sin ^5(x) \tanh ^{-1}\left (\frac {\sqrt {\tan (x)}}{\sqrt {2}}\right )}{4 \sqrt {2} \sin ^{\frac {5}{2}}(2 x) \tan ^{\frac {5}{2}}(x)} \]

[Out]

1/5*cos(x)^5/sin(2*x)^(5/2)+1/6*cos(x)^4*sin(x)/sin(2*x)^(5/2)-3/4*cos(x)^3*sin(x)^2/sin(2*x)^(5/2)+3/8*arctan
h(1/2*tan(x)^(1/2)*2^(1/2))*sin(x)^5/sin(2*x)^(5/2)*2^(1/2)/tan(x)^(5/2)

________________________________________________________________________________________

Rubi [A]  time = 0.58, antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {4390, 898, 1262, 207} \[ \frac {\cos ^5(x)}{5 \sin ^{\frac {5}{2}}(2 x)}+\frac {\sin (x) \cos ^4(x)}{6 \sin ^{\frac {5}{2}}(2 x)}-\frac {3 \sin ^2(x) \cos ^3(x)}{4 \sin ^{\frac {5}{2}}(2 x)}+\frac {3 \sin ^5(x) \tanh ^{-1}\left (\frac {\sqrt {\tan (x)}}{\sqrt {2}}\right )}{4 \sqrt {2} \sin ^{\frac {5}{2}}(2 x) \tan ^{\frac {5}{2}}(x)} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[x]^3*Cos[2*x])/((Sin[x]^2 - Sin[2*x])*Sin[2*x]^(5/2)),x]

[Out]

Cos[x]^5/(5*Sin[2*x]^(5/2)) + (Cos[x]^4*Sin[x])/(6*Sin[2*x]^(5/2)) - (3*Cos[x]^3*Sin[x]^2)/(4*Sin[2*x]^(5/2))
+ (3*ArcTanh[Sqrt[Tan[x]]/Sqrt[2]]*Sin[x]^5)/(4*Sqrt[2]*Sin[2*x]^(5/2)*Tan[x]^(5/2))

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 898

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> With[{q = De
nominator[m]}, Dist[q/e, Subst[Int[x^(q*(m + 1) - 1)*((e*f - d*g)/e + (g*x^q)/e)^n*((c*d^2 + a*e^2)/e^2 - (2*c
*d*x^q)/e^2 + (c*x^(2*q))/e^2)^p, x], x, (d + e*x)^(1/q)], x]] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*
g, 0] && NeQ[c*d^2 + a*e^2, 0] && IntegersQ[n, p] && FractionQ[m]

Rule 1262

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandIntegra
nd[(f*x)^m*(d + e*x^2)^q*(a + c*x^4)^p, x], x] /; FreeQ[{a, c, d, e, f, m, q}, x] && IGtQ[p, 0] && IGtQ[q, -2]

Rule 4390

Int[(u_)*((c_.)*sin[v_])^(m_), x_Symbol] :> With[{w = FunctionOfTrig[(u*Sin[v/2]^(2*m))/(c*Tan[v/2])^m, x]}, D
ist[((c*Sin[v])^m*(c*Tan[v/2])^m)/Sin[v/2]^(2*m), Int[(u*Sin[v/2]^(2*m))/(c*Tan[v/2])^m, x], x] /;  !FalseQ[w]
 && FunctionOfQ[NonfreeFactors[Tan[w], x], (u*Sin[v/2]^(2*m))/(c*Tan[v/2])^m, x]] /; FreeQ[c, x] && LinearQ[v,
 x] && IntegerQ[m + 1/2] &&  !SumQ[u] && InverseFunctionFreeQ[u, x]

Rubi steps

\begin {align*} \int \frac {\cos ^3(x) \cos (2 x)}{\left (\sin ^2(x)-\sin (2 x)\right ) \sin ^{\frac {5}{2}}(2 x)} \, dx &=\frac {\sin ^5(x) \int \frac {\cos (2 x) \csc ^2(x)}{\left (\sin ^2(x)-\sin (2 x)\right ) \sqrt {\tan (x)}} \, dx}{\sin ^{\frac {5}{2}}(2 x) \tan ^{\frac {5}{2}}(x)}\\ &=\frac {\sin ^5(x) \operatorname {Subst}\left (\int \frac {-1+x^2}{(2-x) x^{7/2}} \, dx,x,\tan (x)\right )}{\sin ^{\frac {5}{2}}(2 x) \tan ^{\frac {5}{2}}(x)}\\ &=\frac {\left (2 \sin ^5(x)\right ) \operatorname {Subst}\left (\int \frac {-1+x^4}{x^6 \left (2-x^2\right )} \, dx,x,\sqrt {\tan (x)}\right )}{\sin ^{\frac {5}{2}}(2 x) \tan ^{\frac {5}{2}}(x)}\\ &=\frac {\left (2 \sin ^5(x)\right ) \operatorname {Subst}\left (\int \left (-\frac {1}{2 x^6}-\frac {1}{4 x^4}+\frac {3}{8 x^2}-\frac {3}{8 \left (-2+x^2\right )}\right ) \, dx,x,\sqrt {\tan (x)}\right )}{\sin ^{\frac {5}{2}}(2 x) \tan ^{\frac {5}{2}}(x)}\\ &=\frac {\cos ^5(x)}{5 \sin ^{\frac {5}{2}}(2 x)}+\frac {\cos ^4(x) \sin (x)}{6 \sin ^{\frac {5}{2}}(2 x)}-\frac {3 \cos ^3(x) \sin ^2(x)}{4 \sin ^{\frac {5}{2}}(2 x)}-\frac {\left (3 \sin ^5(x)\right ) \operatorname {Subst}\left (\int \frac {1}{-2+x^2} \, dx,x,\sqrt {\tan (x)}\right )}{4 \sin ^{\frac {5}{2}}(2 x) \tan ^{\frac {5}{2}}(x)}\\ &=\frac {\cos ^5(x)}{5 \sin ^{\frac {5}{2}}(2 x)}+\frac {\cos ^4(x) \sin (x)}{6 \sin ^{\frac {5}{2}}(2 x)}-\frac {3 \cos ^3(x) \sin ^2(x)}{4 \sin ^{\frac {5}{2}}(2 x)}+\frac {3 \tanh ^{-1}\left (\frac {\sqrt {\tan (x)}}{\sqrt {2}}\right ) \sin ^5(x)}{4 \sqrt {2} \sin ^{\frac {5}{2}}(2 x) \tan ^{\frac {5}{2}}(x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 15.72, size = 184, normalized size = 1.94 \[ \frac {1}{960} \sqrt {\sin (2 x)} \sec (x) \left (20 \cot ^2(x)-114 \cot (x)+24 \cot (x) \csc ^2(x)-45 \sqrt {2} \sqrt {\frac {\cos (x)}{\cos (x)-1}} \sqrt {\tan \left (\frac {x}{2}\right )} F\left (\left .\sin ^{-1}\left (\frac {1}{\sqrt {\tan \left (\frac {x}{2}\right )}}\right )\right |-1\right )+45 \sqrt {2} \sqrt {\frac {\cos (x)}{\cos (x)-1}} \sqrt {\tan \left (\frac {x}{2}\right )} \Pi \left (-\frac {2}{-1+\sqrt {5}};\left .\sin ^{-1}\left (\frac {1}{\sqrt {\tan \left (\frac {x}{2}\right )}}\right )\right |-1\right )+45 \sqrt {2} \sqrt {\frac {\cos (x)}{\cos (x)-1}} \sqrt {\tan \left (\frac {x}{2}\right )} \Pi \left (\frac {1}{2} \left (-1+\sqrt {5}\right );\left .\sin ^{-1}\left (\frac {1}{\sqrt {\tan \left (\frac {x}{2}\right )}}\right )\right |-1\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[x]^3*Cos[2*x])/((Sin[x]^2 - Sin[2*x])*Sin[2*x]^(5/2)),x]

[Out]

(Sec[x]*Sqrt[Sin[2*x]]*(-114*Cot[x] + 20*Cot[x]^2 + 24*Cot[x]*Csc[x]^2 - 45*Sqrt[2]*Sqrt[Cos[x]/(-1 + Cos[x])]
*EllipticF[ArcSin[1/Sqrt[Tan[x/2]]], -1]*Sqrt[Tan[x/2]] + 45*Sqrt[2]*Sqrt[Cos[x]/(-1 + Cos[x])]*EllipticPi[-2/
(-1 + Sqrt[5]), ArcSin[1/Sqrt[Tan[x/2]]], -1]*Sqrt[Tan[x/2]] + 45*Sqrt[2]*Sqrt[Cos[x]/(-1 + Cos[x])]*EllipticP
i[(-1 + Sqrt[5])/2, ArcSin[1/Sqrt[Tan[x/2]]], -1]*Sqrt[Tan[x/2]]))/960

________________________________________________________________________________________

fricas [A]  time = 0.47, size = 136, normalized size = 1.43 \[ -\frac {45 \, {\left (\cos \relax (x)^{2} - 1\right )} \log \left (-\frac {1}{2} \, \sqrt {2} \sqrt {\cos \relax (x) \sin \relax (x)} {\left (4 \, \cos \relax (x) + 3 \, \sin \relax (x)\right )} + \frac {1}{2} \, \cos \relax (x)^{2} + \frac {7}{2} \, \cos \relax (x) \sin \relax (x) + \frac {1}{2}\right ) \sin \relax (x) - 45 \, {\left (\cos \relax (x)^{2} - 1\right )} \log \left (\frac {1}{2} \, \cos \relax (x)^{2} + \frac {1}{2} \, \sqrt {2} \sqrt {\cos \relax (x) \sin \relax (x)} \sin \relax (x) - \frac {1}{2} \, \cos \relax (x) \sin \relax (x) + \frac {1}{2}\right ) \sin \relax (x) + 4 \, \sqrt {2} {\left (57 \, \cos \relax (x)^{2} + 10 \, \cos \relax (x) \sin \relax (x) - 45\right )} \sqrt {\cos \relax (x) \sin \relax (x)} + 268 \, {\left (\cos \relax (x)^{2} - 1\right )} \sin \relax (x)}{1920 \, {\left (\cos \relax (x)^{2} - 1\right )} \sin \relax (x)} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(x)^3*cos(2*x)/(sin(x)^2-sin(2*x))/sin(2*x)^(5/2),x, algorithm="fricas")

[Out]

-1/1920*(45*(cos(x)^2 - 1)*log(-1/2*sqrt(2)*sqrt(cos(x)*sin(x))*(4*cos(x) + 3*sin(x)) + 1/2*cos(x)^2 + 7/2*cos
(x)*sin(x) + 1/2)*sin(x) - 45*(cos(x)^2 - 1)*log(1/2*cos(x)^2 + 1/2*sqrt(2)*sqrt(cos(x)*sin(x))*sin(x) - 1/2*c
os(x)*sin(x) + 1/2)*sin(x) + 4*sqrt(2)*(57*cos(x)^2 + 10*cos(x)*sin(x) - 45)*sqrt(cos(x)*sin(x)) + 268*(cos(x)
^2 - 1)*sin(x))/((cos(x)^2 - 1)*sin(x))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (2 \, x\right ) \cos \relax (x)^{3}}{{\left (\sin \relax (x)^{2} - \sin \left (2 \, x\right )\right )} \sin \left (2 \, x\right )^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(x)^3*cos(2*x)/(sin(x)^2-sin(2*x))/sin(2*x)^(5/2),x, algorithm="giac")

[Out]

integrate(cos(2*x)*cos(x)^3/((sin(x)^2 - sin(2*x))*sin(2*x)^(5/2)), x)

________________________________________________________________________________________

maple [C]  time = 0.38, size = 761, normalized size = 8.01 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(x)^3*cos(2*x)/(sin(x)^2-sin(2*x))/sin(2*x)^(5/2),x)

[Out]

1/3840*(-tan(1/2*x)/(tan(1/2*x)^2-1))^(1/2)/tan(1/2*x)^3*(1772*((tan(1/2*x)-1)*(1+tan(1/2*x))*tan(1/2*x))^(1/2
)*(-2*tan(1/2*x)+2)^(1/2)*EllipticF((1+tan(1/2*x))^(1/2),1/2*2^(1/2))*((tan(1/2*x)^2-1)*tan(1/2*x))^(1/2)*(1+t
an(1/2*x))^(1/2)*(-tan(1/2*x))^(1/2)*tan(1/2*x)^2-4464*((tan(1/2*x)-1)*(1+tan(1/2*x))*tan(1/2*x))^(1/2)*(-2*ta
n(1/2*x)+2)^(1/2)*EllipticE((1+tan(1/2*x))^(1/2),1/2*2^(1/2))*((tan(1/2*x)^2-1)*tan(1/2*x))^(1/2)*(1+tan(1/2*x
))^(1/2)*(-tan(1/2*x))^(1/2)*tan(1/2*x)^2+24*((tan(1/2*x)-1)*(1+tan(1/2*x))*tan(1/2*x))^(1/2)*((tan(1/2*x)^2-1
)*tan(1/2*x))^(1/2)*tan(1/2*x)^6+3*((tan(1/2*x)-1)*(1+tan(1/2*x))*tan(1/2*x))^(1/2)*(tan(1/2*x)^3-tan(1/2*x))^
(1/2)*sum((6*_alpha^3+7*_alpha^2+6*_alpha+1)*(_alpha^3+2*_alpha-3)*(1+tan(1/2*x))^(1/2)*(1-tan(1/2*x))^(1/2)*(
-tan(1/2*x))^(1/2)*EllipticPi((1+tan(1/2*x))^(1/2),-1/4*_alpha^3-1/2*_alpha+3/4,1/2*2^(1/2))/((tan(1/2*x)^2-1)
*tan(1/2*x))^(1/2),_alpha=RootOf(_Z^4+_Z^3+2*_Z^2-_Z+1))*((tan(1/2*x)^2-1)*tan(1/2*x))^(1/2)*2^(1/2)*tan(1/2*x
)^2-40*((tan(1/2*x)-1)*(1+tan(1/2*x))*tan(1/2*x))^(1/2)*((tan(1/2*x)^2-1)*tan(1/2*x))^(1/2)*tan(1/2*x)^5-1272*
tan(1/2*x)^4*((tan(1/2*x)-1)*(1+tan(1/2*x))*tan(1/2*x))^(1/2)*(tan(1/2*x)^3-tan(1/2*x))^(1/2)-24*tan(1/2*x)^4*
((tan(1/2*x)^2-1)*tan(1/2*x))^(1/2)*((tan(1/2*x)-1)*(1+tan(1/2*x))*tan(1/2*x))^(1/2)-1920*tan(1/2*x)^4*((tan(1
/2*x)^2-1)*tan(1/2*x))^(1/2)*(tan(1/2*x)^3-tan(1/2*x))^(1/2)+1272*((tan(1/2*x)-1)*(1+tan(1/2*x))*tan(1/2*x))^(
1/2)*(tan(1/2*x)^3-tan(1/2*x))^(1/2)*tan(1/2*x)^2-24*((tan(1/2*x)-1)*(1+tan(1/2*x))*tan(1/2*x))^(1/2)*((tan(1/
2*x)^2-1)*tan(1/2*x))^(1/2)*tan(1/2*x)^2+40*((tan(1/2*x)^2-1)*tan(1/2*x))^(1/2)*((tan(1/2*x)-1)*(1+tan(1/2*x))
*tan(1/2*x))^(1/2)*tan(1/2*x)+24*((tan(1/2*x)^2-1)*tan(1/2*x))^(1/2)*((tan(1/2*x)-1)*(1+tan(1/2*x))*tan(1/2*x)
)^(1/2))/((tan(1/2*x)-1)*(1+tan(1/2*x))*tan(1/2*x))^(1/2)/(tan(1/2*x)^3-tan(1/2*x))^(1/2)

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(x)^3*cos(2*x)/(sin(x)^2-sin(2*x))/sin(2*x)^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int -\frac {\cos \left (2\,x\right )\,{\cos \relax (x)}^3}{{\sin \left (2\,x\right )}^{5/2}\,\left (\sin \left (2\,x\right )-{\sin \relax (x)}^2\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(cos(2*x)*cos(x)^3)/(sin(2*x)^(5/2)*(sin(2*x) - sin(x)^2)),x)

[Out]

int(-(cos(2*x)*cos(x)^3)/(sin(2*x)^(5/2)*(sin(2*x) - sin(x)^2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(x)**3*cos(2*x)/(sin(x)**2-sin(2*x))/sin(2*x)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________