3.20 \(\int \sqrt {x} \tan ^{-1}(\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}) \, dx\)

Optimal. Leaf size=153 \[ \frac {2 d^{3/4} \sqrt {-e} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{9 e^{5/4} \sqrt {d+e x^2}}+\frac {4 \sqrt {x} \sqrt {d+e x^2}}{9 \sqrt {-e}}+\frac {2}{3} x^{3/2} \tan ^{-1}\left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right ) \]

[Out]

2/3*x^(3/2)*arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))+4/9*x^(1/2)*(e*x^2+d)^(1/2)/(-e)^(1/2)+2/9*d^(3/4)*(cos(2*arc
tan(e^(1/4)*x^(1/2)/d^(1/4)))^2)^(1/2)/cos(2*arctan(e^(1/4)*x^(1/2)/d^(1/4)))*EllipticF(sin(2*arctan(e^(1/4)*x
^(1/2)/d^(1/4))),1/2*2^(1/2))*(-e)^(1/2)*(d^(1/2)+x*e^(1/2))*((e*x^2+d)/(d^(1/2)+x*e^(1/2))^2)^(1/2)/e^(5/4)/(
e*x^2+d)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 153, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {5151, 321, 329, 220} \[ \frac {2 d^{3/4} \sqrt {-e} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} \text {EllipticF}\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right ),\frac {1}{2}\right )}{9 e^{5/4} \sqrt {d+e x^2}}+\frac {4 \sqrt {x} \sqrt {d+e x^2}}{9 \sqrt {-e}}+\frac {2}{3} x^{3/2} \tan ^{-1}\left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[x]*ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]],x]

[Out]

(4*Sqrt[x]*Sqrt[d + e*x^2])/(9*Sqrt[-e]) + (2*x^(3/2)*ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]])/3 + (2*d^(3/4)*Sqr
t[-e]*(Sqrt[d] + Sqrt[e]*x)*Sqrt[(d + e*x^2)/(Sqrt[d] + Sqrt[e]*x)^2]*EllipticF[2*ArcTan[(e^(1/4)*Sqrt[x])/d^(
1/4)], 1/2])/(9*e^(5/4)*Sqrt[d + e*x^2])

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 5151

Int[ArcTan[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*ArcTa
n[(c*x)/Sqrt[a + b*x^2]])/(d*(m + 1)), x] - Dist[c/(d*(m + 1)), Int[(d*x)^(m + 1)/Sqrt[a + b*x^2], x], x] /; F
reeQ[{a, b, c, d, m}, x] && EqQ[b + c^2, 0] && NeQ[m, -1]

Rubi steps

\begin {align*} \int \sqrt {x} \tan ^{-1}\left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right ) \, dx &=\frac {2}{3} x^{3/2} \tan ^{-1}\left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )-\frac {1}{3} \left (2 \sqrt {-e}\right ) \int \frac {x^{3/2}}{\sqrt {d+e x^2}} \, dx\\ &=\frac {4 \sqrt {x} \sqrt {d+e x^2}}{9 \sqrt {-e}}+\frac {2}{3} x^{3/2} \tan ^{-1}\left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )-\frac {(2 d) \int \frac {1}{\sqrt {x} \sqrt {d+e x^2}} \, dx}{9 \sqrt {-e}}\\ &=\frac {4 \sqrt {x} \sqrt {d+e x^2}}{9 \sqrt {-e}}+\frac {2}{3} x^{3/2} \tan ^{-1}\left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )-\frac {(4 d) \operatorname {Subst}\left (\int \frac {1}{\sqrt {d+e x^4}} \, dx,x,\sqrt {x}\right )}{9 \sqrt {-e}}\\ &=\frac {4 \sqrt {x} \sqrt {d+e x^2}}{9 \sqrt {-e}}+\frac {2}{3} x^{3/2} \tan ^{-1}\left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )-\frac {2 d^{3/4} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{9 \sqrt {-e} \sqrt [4]{e} \sqrt {d+e x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.31, size = 147, normalized size = 0.96 \[ \frac {4 \sqrt {x} \sqrt {d+e x^2}}{9 \sqrt {-e}}-\frac {4 i d x \sqrt {\frac {d}{e x^2}+1} F\left (\left .i \sinh ^{-1}\left (\frac {\sqrt {\frac {i \sqrt {d}}{\sqrt {e}}}}{\sqrt {x}}\right )\right |-1\right )}{9 \sqrt {-e} \sqrt {\frac {i \sqrt {d}}{\sqrt {e}}} \sqrt {d+e x^2}}+\frac {2}{3} x^{3/2} \tan ^{-1}\left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[x]*ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]],x]

[Out]

(4*Sqrt[x]*Sqrt[d + e*x^2])/(9*Sqrt[-e]) + (2*x^(3/2)*ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]])/3 - (((4*I)/9)*d*S
qrt[1 + d/(e*x^2)]*x*EllipticF[I*ArcSinh[Sqrt[(I*Sqrt[d])/Sqrt[e]]/Sqrt[x]], -1])/(Sqrt[(I*Sqrt[d])/Sqrt[e]]*S
qrt[-e]*Sqrt[d + e*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.48, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\sqrt {x} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {e x^{2} + d}}\right ), x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)*arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2)),x, algorithm="fricas")

[Out]

integral(sqrt(x)*arctan(sqrt(-e)*x/sqrt(e*x^2 + d)), x)

________________________________________________________________________________________

giac [A]  time = 0.25, size = 1, normalized size = 0.01 \[ +\infty \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)*arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2)),x, algorithm="giac")

[Out]

+Infinity

________________________________________________________________________________________

maple [F]  time = 0.25, size = 0, normalized size = 0.00 \[ \int \sqrt {x}\, \arctan \left (\frac {x \sqrt {-e}}{\sqrt {e \,x^{2}+d}}\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(1/2)*arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2)),x)

[Out]

int(x^(1/2)*arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2)),x)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)*arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2)),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: Error executing code in Maxima: sign: argument cannot be imaginary
; found sqrt(-_SAGE_VAR_e)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \sqrt {x}\,\mathrm {atan}\left (\frac {\sqrt {-e}\,x}{\sqrt {e\,x^2+d}}\right ) \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(1/2)*atan(((-e)^(1/2)*x)/(d + e*x^2)^(1/2)),x)

[Out]

int(x^(1/2)*atan(((-e)^(1/2)*x)/(d + e*x^2)^(1/2)), x)

________________________________________________________________________________________

sympy [C]  time = 3.96, size = 75, normalized size = 0.49 \[ \frac {2 x^{\frac {3}{2}} \operatorname {atan}{\left (\frac {x \sqrt {- e}}{\sqrt {d + e x^{2}}} \right )}}{3} - \frac {x^{\frac {5}{2}} \sqrt {- e} \Gamma \left (\frac {5}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {5}{4} \\ \frac {9}{4} \end {matrix}\middle | {\frac {e x^{2} e^{i \pi }}{d}} \right )}}{3 \sqrt {d} \Gamma \left (\frac {9}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(1/2)*atan(x*(-e)**(1/2)/(e*x**2+d)**(1/2)),x)

[Out]

2*x**(3/2)*atan(x*sqrt(-e)/sqrt(d + e*x**2))/3 - x**(5/2)*sqrt(-e)*gamma(5/4)*hyper((1/2, 5/4), (9/4,), e*x**2
*exp_polar(I*pi)/d)/(3*sqrt(d)*gamma(9/4))

________________________________________________________________________________________