3.37 \(\int x^m \tan ^{-1}(\tan (a+b x)) \, dx\)

Optimal. Leaf size=37 \[ \frac {x^{m+1} \tan ^{-1}(\tan (a+b x))}{m+1}-\frac {b x^{m+2}}{m^2+3 m+2} \]

[Out]

-b*x^(2+m)/(m^2+3*m+2)+x^(1+m)*arctan(tan(b*x+a))/(1+m)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 37, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {2168, 30} \[ \frac {x^{m+1} \tan ^{-1}(\tan (a+b x))}{m+1}-\frac {b x^{m+2}}{m^2+3 m+2} \]

Antiderivative was successfully verified.

[In]

Int[x^m*ArcTan[Tan[a + b*x]],x]

[Out]

-((b*x^(2 + m))/(2 + 3*m + m^2)) + (x^(1 + m)*ArcTan[Tan[a + b*x]])/(1 + m)

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2168

Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(u^(m + 1)*v^
n)/(a*(m + 1)), x] - Dist[(b*n)/(a*(m + 1)), Int[u^(m + 1)*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{m
, n}, x] && PiecewiseLinearQ[u, v, x] && NeQ[m, -1] && ((LtQ[m, -1] && GtQ[n, 0] &&  !(ILtQ[m + n, -2] && (Fra
ctionQ[m] || GeQ[2*n + m + 1, 0]))) || (IGtQ[n, 0] && IGtQ[m, 0] && LeQ[n, m]) || (IGtQ[n, 0] &&  !IntegerQ[m]
) || (ILtQ[m, 0] &&  !IntegerQ[n]))

Rubi steps

\begin {align*} \int x^m \tan ^{-1}(\tan (a+b x)) \, dx &=\frac {x^{1+m} \tan ^{-1}(\tan (a+b x))}{1+m}-\frac {b \int x^{1+m} \, dx}{1+m}\\ &=-\frac {b x^{2+m}}{2+3 m+m^2}+\frac {x^{1+m} \tan ^{-1}(\tan (a+b x))}{1+m}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 34, normalized size = 0.92 \[ x^m \left (\frac {x \left (\tan ^{-1}(\tan (a+b x))-b x\right )}{m+1}+\frac {b x^2}{m+2}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x^m*ArcTan[Tan[a + b*x]],x]

[Out]

x^m*((b*x^2)/(2 + m) + (x*(-(b*x) + ArcTan[Tan[a + b*x]]))/(1 + m))

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 33, normalized size = 0.89 \[ \frac {{\left ({\left (b m + b\right )} x^{2} + {\left (a m + 2 \, a\right )} x\right )} x^{m}}{m^{2} + 3 \, m + 2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m*arctan(tan(b*x+a)),x, algorithm="fricas")

[Out]

((b*m + b)*x^2 + (a*m + 2*a)*x)*x^m/(m^2 + 3*m + 2)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \mathit {sage}_{0} x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m*arctan(tan(b*x+a)),x, algorithm="giac")

[Out]

sage0*x

________________________________________________________________________________________

maple [A]  time = 0.18, size = 41, normalized size = 1.11 \[ \frac {b \,x^{2} {\mathrm e}^{m \ln \relax (x )}}{2+m}+\frac {\left (\arctan \left (\tan \left (b x +a \right )\right )-b x \right ) x \,{\mathrm e}^{m \ln \relax (x )}}{1+m} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^m*arctan(tan(b*x+a)),x)

[Out]

b/(2+m)*x^2*exp(m*ln(x))+(arctan(tan(b*x+a))-b*x)/(1+m)*x*exp(m*ln(x))

________________________________________________________________________________________

maxima [A]  time = 0.34, size = 38, normalized size = 1.03 \[ -\frac {b x^{2} x^{m}}{{\left (m + 2\right )} {\left (m + 1\right )}} + \frac {x^{m + 1} \arctan \left (\tan \left (b x + a\right )\right )}{m + 1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m*arctan(tan(b*x+a)),x, algorithm="maxima")

[Out]

-b*x^2*x^m/((m + 2)*(m + 1)) + x^(m + 1)*arctan(tan(b*x + a))/(m + 1)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 \[ \int x^m\,\mathrm {atan}\left (\mathrm {tan}\left (a+b\,x\right )\right ) \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^m*atan(tan(a + b*x)),x)

[Out]

int(x^m*atan(tan(a + b*x)), x)

________________________________________________________________________________________

sympy [A]  time = 2.70, size = 158, normalized size = 4.27 \[ \begin {cases} b \log {\relax (x )} - \frac {\operatorname {atan}{\left (\tan {\left (a + b x \right )} \right )} + \pi \left \lfloor {\frac {a + b x - \frac {\pi }{2}}{\pi }}\right \rfloor }{x} & \text {for}\: m = -2 \\- b x \log {\relax (x )} + b x + \left (\operatorname {atan}{\left (\tan {\left (a + b x \right )} \right )} + 2 \pi \left \lfloor {\frac {a + b x - \frac {\pi }{2}}{\pi }}\right \rfloor \right ) \log {\relax (x )} & \text {for}\: m = -1 \\- \frac {b x^{2} x^{m}}{m^{2} + 3 m + 2} + \frac {m x x^{m} \left (\operatorname {atan}{\left (\tan {\left (a + b x \right )} \right )} + \pi \left \lfloor {\frac {a + b x - \frac {\pi }{2}}{\pi }}\right \rfloor \right )}{m^{2} + 3 m + 2} + \frac {2 x x^{m} \left (\operatorname {atan}{\left (\tan {\left (a + b x \right )} \right )} + \pi \left \lfloor {\frac {a + b x - \frac {\pi }{2}}{\pi }}\right \rfloor \right )}{m^{2} + 3 m + 2} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**m*atan(tan(b*x+a)),x)

[Out]

Piecewise((b*log(x) - (atan(tan(a + b*x)) + pi*floor((a + b*x - pi/2)/pi))/x, Eq(m, -2)), (-b*x*log(x) + b*x +
 (atan(tan(a + b*x)) + 2*pi*floor((a + b*x - pi/2)/pi))*log(x), Eq(m, -1)), (-b*x**2*x**m/(m**2 + 3*m + 2) + m
*x*x**m*(atan(tan(a + b*x)) + pi*floor((a + b*x - pi/2)/pi))/(m**2 + 3*m + 2) + 2*x*x**m*(atan(tan(a + b*x)) +
 pi*floor((a + b*x - pi/2)/pi))/(m**2 + 3*m + 2), True))

________________________________________________________________________________________