3.9 \(\int \frac {\tan ^{-1}(\frac {\sqrt {-e} x}{\sqrt {d+e x^2}})}{x^7} \, dx\)

Optimal. Leaf size=113 \[ -\frac {4 (-e)^{5/2} \sqrt {d+e x^2}}{45 d^3 x}-\frac {2 (-e)^{3/2} \sqrt {d+e x^2}}{45 d^2 x^3}-\frac {\tan ^{-1}\left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{6 x^6}-\frac {\sqrt {-e} \sqrt {d+e x^2}}{30 d x^5} \]

[Out]

-1/6*arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^6-2/45*(-e)^(3/2)*(e*x^2+d)^(1/2)/d^2/x^3-4/45*(-e)^(5/2)*(e*x^2+d
)^(1/2)/d^3/x-1/30*(-e)^(1/2)*(e*x^2+d)^(1/2)/d/x^5

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 113, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {5151, 271, 264} \[ -\frac {4 (-e)^{5/2} \sqrt {d+e x^2}}{45 d^3 x}-\frac {2 (-e)^{3/2} \sqrt {d+e x^2}}{45 d^2 x^3}-\frac {\sqrt {-e} \sqrt {d+e x^2}}{30 d x^5}-\frac {\tan ^{-1}\left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{6 x^6} \]

Antiderivative was successfully verified.

[In]

Int[ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]]/x^7,x]

[Out]

-(Sqrt[-e]*Sqrt[d + e*x^2])/(30*d*x^5) - (2*(-e)^(3/2)*Sqrt[d + e*x^2])/(45*d^2*x^3) - (4*(-e)^(5/2)*Sqrt[d +
e*x^2])/(45*d^3*x) - ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]]/(6*x^6)

Rule 264

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a
*c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rule 271

Int[(x_)^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x^(m + 1)*(a + b*x^n)^(p + 1))/(a*(m + 1)), x]
 - Dist[(b*(m + n*(p + 1) + 1))/(a*(m + 1)), Int[x^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, m, n, p}, x]
&& ILtQ[Simplify[(m + 1)/n + p + 1], 0] && NeQ[m, -1]

Rule 5151

Int[ArcTan[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*ArcTa
n[(c*x)/Sqrt[a + b*x^2]])/(d*(m + 1)), x] - Dist[c/(d*(m + 1)), Int[(d*x)^(m + 1)/Sqrt[a + b*x^2], x], x] /; F
reeQ[{a, b, c, d, m}, x] && EqQ[b + c^2, 0] && NeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\tan ^{-1}\left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{x^7} \, dx &=-\frac {\tan ^{-1}\left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{6 x^6}+\frac {1}{6} \sqrt {-e} \int \frac {1}{x^6 \sqrt {d+e x^2}} \, dx\\ &=-\frac {\sqrt {-e} \sqrt {d+e x^2}}{30 d x^5}-\frac {\tan ^{-1}\left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{6 x^6}+\frac {\left (2 (-e)^{3/2}\right ) \int \frac {1}{x^4 \sqrt {d+e x^2}} \, dx}{15 d}\\ &=-\frac {\sqrt {-e} \sqrt {d+e x^2}}{30 d x^5}-\frac {2 (-e)^{3/2} \sqrt {d+e x^2}}{45 d^2 x^3}-\frac {\tan ^{-1}\left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{6 x^6}+\frac {\left (4 (-e)^{5/2}\right ) \int \frac {1}{x^2 \sqrt {d+e x^2}} \, dx}{45 d^2}\\ &=-\frac {\sqrt {-e} \sqrt {d+e x^2}}{30 d x^5}-\frac {2 (-e)^{3/2} \sqrt {d+e x^2}}{45 d^2 x^3}-\frac {4 (-e)^{5/2} \sqrt {d+e x^2}}{45 d^3 x}-\frac {\tan ^{-1}\left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{6 x^6}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 78, normalized size = 0.69 \[ \frac {\sqrt {-e} x \sqrt {d+e x^2} \left (-3 d^2+4 d e x^2-8 e^2 x^4\right )-15 d^3 \tan ^{-1}\left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{90 d^3 x^6} \]

Antiderivative was successfully verified.

[In]

Integrate[ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]]/x^7,x]

[Out]

(Sqrt[-e]*x*Sqrt[d + e*x^2]*(-3*d^2 + 4*d*e*x^2 - 8*e^2*x^4) - 15*d^3*ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]])/(9
0*d^3*x^6)

________________________________________________________________________________________

fricas [A]  time = 0.84, size = 68, normalized size = 0.60 \[ -\frac {15 \, d^{3} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {e x^{2} + d}}\right ) + {\left (8 \, e^{2} x^{5} - 4 \, d e x^{3} + 3 \, d^{2} x\right )} \sqrt {e x^{2} + d} \sqrt {-e}}{90 \, d^{3} x^{6}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^7,x, algorithm="fricas")

[Out]

-1/90*(15*d^3*arctan(sqrt(-e)*x/sqrt(e*x^2 + d)) + (8*e^2*x^5 - 4*d*e*x^3 + 3*d^2*x)*sqrt(e*x^2 + d)*sqrt(-e))
/(d^3*x^6)

________________________________________________________________________________________

giac [B]  time = 0.28, size = 282, normalized size = 2.50 \[ \frac {x^{5} {\left (\frac {25 \, {\left (\sqrt {-x^{2} e^{2} - d e} e - \sqrt {-d e} e\right )}^{2} e^{\left (-1\right )}}{x^{2}} + \frac {150 \, {\left (\sqrt {-x^{2} e^{2} - d e} e - \sqrt {-d e} e\right )}^{4} e^{\left (-5\right )}}{x^{4}} + 3 \, e^{3}\right )} e^{10}}{2880 \, {\left (\sqrt {-x^{2} e^{2} - d e} e - \sqrt {-d e} e\right )}^{5} d^{3}} - \frac {\arctan \left (\frac {x \sqrt {-e}}{\sqrt {x^{2} e + d}}\right )}{6 \, x^{6}} - \frac {{\left (\frac {150 \, {\left (\sqrt {-x^{2} e^{2} - d e} e - \sqrt {-d e} e\right )} d^{12} e^{16}}{x} + \frac {25 \, {\left (\sqrt {-x^{2} e^{2} - d e} e - \sqrt {-d e} e\right )}^{3} d^{12} e^{12}}{x^{3}} + \frac {3 \, {\left (\sqrt {-x^{2} e^{2} - d e} e - \sqrt {-d e} e\right )}^{5} d^{12} e^{8}}{x^{5}}\right )} e^{\left (-15\right )}}{2880 \, d^{15}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^7,x, algorithm="giac")

[Out]

1/2880*x^5*(25*(sqrt(-x^2*e^2 - d*e)*e - sqrt(-d*e)*e)^2*e^(-1)/x^2 + 150*(sqrt(-x^2*e^2 - d*e)*e - sqrt(-d*e)
*e)^4*e^(-5)/x^4 + 3*e^3)*e^10/((sqrt(-x^2*e^2 - d*e)*e - sqrt(-d*e)*e)^5*d^3) - 1/6*arctan(x*sqrt(-e)/sqrt(x^
2*e + d))/x^6 - 1/2880*(150*(sqrt(-x^2*e^2 - d*e)*e - sqrt(-d*e)*e)*d^12*e^16/x + 25*(sqrt(-x^2*e^2 - d*e)*e -
 sqrt(-d*e)*e)^3*d^12*e^12/x^3 + 3*(sqrt(-x^2*e^2 - d*e)*e - sqrt(-d*e)*e)^5*d^12*e^8/x^5)*e^(-15)/d^15

________________________________________________________________________________________

maple [A]  time = 0.04, size = 117, normalized size = 1.04 \[ -\frac {\arctan \left (\frac {x \sqrt {-e}}{\sqrt {e \,x^{2}+d}}\right )}{6 x^{6}}+\frac {\sqrt {-e}\, e \sqrt {e \,x^{2}+d}}{18 d^{2} x^{3}}-\frac {\sqrt {-e}\, e^{2} \sqrt {e \,x^{2}+d}}{9 d^{3} x}-\frac {\sqrt {-e}\, \left (e \,x^{2}+d \right )^{\frac {3}{2}}}{30 d^{2} x^{5}}+\frac {\sqrt {-e}\, e \left (e \,x^{2}+d \right )^{\frac {3}{2}}}{45 d^{3} x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^7,x)

[Out]

-1/6*arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^6+1/18*(-e)^(1/2)*e/d^2/x^3*(e*x^2+d)^(1/2)-1/9*(-e)^(1/2)*e^2/d^3
/x*(e*x^2+d)^(1/2)-1/30*(-e)^(1/2)/d^2/x^5*(e*x^2+d)^(3/2)+1/45*(-e)^(1/2)/d^3*e/x^3*(e*x^2+d)^(3/2)

________________________________________________________________________________________

maxima [A]  time = 0.34, size = 109, normalized size = 0.96 \[ -\frac {{\left (2 \, e^{2} x^{4} + d e x^{2} - d^{2}\right )} \sqrt {-e} e}{18 \, \sqrt {e x^{2} + d} d^{3} x^{3}} - \frac {\arctan \left (\frac {\sqrt {-e} x}{\sqrt {e x^{2} + d}}\right )}{6 \, x^{6}} + \frac {{\left (2 \, e^{2} x^{4} - d e x^{2} - 3 \, d^{2}\right )} \sqrt {e x^{2} + d} \sqrt {-e}}{90 \, d^{3} x^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^7,x, algorithm="maxima")

[Out]

-1/18*(2*e^2*x^4 + d*e*x^2 - d^2)*sqrt(-e)*e/(sqrt(e*x^2 + d)*d^3*x^3) - 1/6*arctan(sqrt(-e)*x/sqrt(e*x^2 + d)
)/x^6 + 1/90*(2*e^2*x^4 - d*e*x^2 - 3*d^2)*sqrt(e*x^2 + d)*sqrt(-e)/(d^3*x^5)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\mathrm {atan}\left (\frac {\sqrt {-e}\,x}{\sqrt {e\,x^2+d}}\right )}{x^7} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(atan(((-e)^(1/2)*x)/(d + e*x^2)^(1/2))/x^7,x)

[Out]

int(atan(((-e)^(1/2)*x)/(d + e*x^2)^(1/2))/x^7, x)

________________________________________________________________________________________

sympy [B]  time = 6.50, size = 352, normalized size = 3.12 \[ - \frac {d^{4} e^{\frac {9}{2}} \sqrt {- e} \sqrt {\frac {d}{e x^{2}} + 1}}{30 d^{5} e^{4} x^{4} + 60 d^{4} e^{5} x^{6} + 30 d^{3} e^{6} x^{8}} - \frac {d^{3} e^{\frac {11}{2}} x^{2} \sqrt {- e} \sqrt {\frac {d}{e x^{2}} + 1}}{45 d^{5} e^{4} x^{4} + 90 d^{4} e^{5} x^{6} + 45 d^{3} e^{6} x^{8}} - \frac {d^{2} e^{\frac {13}{2}} x^{4} \sqrt {- e} \sqrt {\frac {d}{e x^{2}} + 1}}{30 d^{5} e^{4} x^{4} + 60 d^{4} e^{5} x^{6} + 30 d^{3} e^{6} x^{8}} - \frac {2 d e^{\frac {15}{2}} x^{6} \sqrt {- e} \sqrt {\frac {d}{e x^{2}} + 1}}{15 d^{5} e^{4} x^{4} + 30 d^{4} e^{5} x^{6} + 15 d^{3} e^{6} x^{8}} - \frac {4 e^{\frac {17}{2}} x^{8} \sqrt {- e} \sqrt {\frac {d}{e x^{2}} + 1}}{45 d^{5} e^{4} x^{4} + 90 d^{4} e^{5} x^{6} + 45 d^{3} e^{6} x^{8}} - \frac {\operatorname {atan}{\left (\frac {x \sqrt {- e}}{\sqrt {d + e x^{2}}} \right )}}{6 x^{6}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atan(x*(-e)**(1/2)/(e*x**2+d)**(1/2))/x**7,x)

[Out]

-d**4*e**(9/2)*sqrt(-e)*sqrt(d/(e*x**2) + 1)/(30*d**5*e**4*x**4 + 60*d**4*e**5*x**6 + 30*d**3*e**6*x**8) - d**
3*e**(11/2)*x**2*sqrt(-e)*sqrt(d/(e*x**2) + 1)/(45*d**5*e**4*x**4 + 90*d**4*e**5*x**6 + 45*d**3*e**6*x**8) - d
**2*e**(13/2)*x**4*sqrt(-e)*sqrt(d/(e*x**2) + 1)/(30*d**5*e**4*x**4 + 60*d**4*e**5*x**6 + 30*d**3*e**6*x**8) -
 2*d*e**(15/2)*x**6*sqrt(-e)*sqrt(d/(e*x**2) + 1)/(15*d**5*e**4*x**4 + 30*d**4*e**5*x**6 + 15*d**3*e**6*x**8)
- 4*e**(17/2)*x**8*sqrt(-e)*sqrt(d/(e*x**2) + 1)/(45*d**5*e**4*x**4 + 90*d**4*e**5*x**6 + 45*d**3*e**6*x**8) -
 atan(x*sqrt(-e)/sqrt(d + e*x**2))/(6*x**6)

________________________________________________________________________________________