3.101 \(\int \frac {1}{a+b \sinh (c+d x)} \, dx\)

Optimal. Leaf size=44 \[ -\frac {2 \tanh ^{-1}\left (\frac {b-a \tanh \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2+b^2}}\right )}{d \sqrt {a^2+b^2}} \]

[Out]

-2*arctanh((b-a*tanh(1/2*d*x+1/2*c))/(a^2+b^2)^(1/2))/d/(a^2+b^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 44, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {2660, 618, 204} \[ -\frac {2 \tanh ^{-1}\left (\frac {b-a \tanh \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2+b^2}}\right )}{d \sqrt {a^2+b^2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sinh[c + d*x])^(-1),x]

[Out]

(-2*ArcTanh[(b - a*Tanh[(c + d*x)/2])/Sqrt[a^2 + b^2]])/(Sqrt[a^2 + b^2]*d)

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {1}{a+b \sinh (c+d x)} \, dx &=-\frac {(2 i) \operatorname {Subst}\left (\int \frac {1}{a-2 i b x+a x^2} \, dx,x,\tan \left (\frac {1}{2} (i c+i d x)\right )\right )}{d}\\ &=\frac {(4 i) \operatorname {Subst}\left (\int \frac {1}{-4 \left (a^2+b^2\right )-x^2} \, dx,x,-2 i b+2 a \tan \left (\frac {1}{2} (i c+i d x)\right )\right )}{d}\\ &=-\frac {2 \tanh ^{-1}\left (\frac {b-a \tanh \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2+b^2}}\right )}{\sqrt {a^2+b^2} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 52, normalized size = 1.18 \[ \frac {2 \tan ^{-1}\left (\frac {b-a \tanh \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-a^2-b^2}}\right )}{d \sqrt {-a^2-b^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sinh[c + d*x])^(-1),x]

[Out]

(2*ArcTan[(b - a*Tanh[(c + d*x)/2])/Sqrt[-a^2 - b^2]])/(Sqrt[-a^2 - b^2]*d)

________________________________________________________________________________________

fricas [B]  time = 0.65, size = 162, normalized size = 3.68 \[ \frac {\log \left (\frac {b^{2} \cosh \left (d x + c\right )^{2} + b^{2} \sinh \left (d x + c\right )^{2} + 2 \, a b \cosh \left (d x + c\right ) + 2 \, a^{2} + b^{2} + 2 \, {\left (b^{2} \cosh \left (d x + c\right ) + a b\right )} \sinh \left (d x + c\right ) - 2 \, \sqrt {a^{2} + b^{2}} {\left (b \cosh \left (d x + c\right ) + b \sinh \left (d x + c\right ) + a\right )}}{b \cosh \left (d x + c\right )^{2} + b \sinh \left (d x + c\right )^{2} + 2 \, a \cosh \left (d x + c\right ) + 2 \, {\left (b \cosh \left (d x + c\right ) + a\right )} \sinh \left (d x + c\right ) - b}\right )}{\sqrt {a^{2} + b^{2}} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sinh(d*x+c)),x, algorithm="fricas")

[Out]

log((b^2*cosh(d*x + c)^2 + b^2*sinh(d*x + c)^2 + 2*a*b*cosh(d*x + c) + 2*a^2 + b^2 + 2*(b^2*cosh(d*x + c) + a*
b)*sinh(d*x + c) - 2*sqrt(a^2 + b^2)*(b*cosh(d*x + c) + b*sinh(d*x + c) + a))/(b*cosh(d*x + c)^2 + b*sinh(d*x
+ c)^2 + 2*a*cosh(d*x + c) + 2*(b*cosh(d*x + c) + a)*sinh(d*x + c) - b))/(sqrt(a^2 + b^2)*d)

________________________________________________________________________________________

giac [A]  time = 0.15, size = 67, normalized size = 1.52 \[ \frac {\log \left (\frac {{\left | 2 \, b e^{\left (d x + c\right )} + 2 \, a - 2 \, \sqrt {a^{2} + b^{2}} \right |}}{{\left | 2 \, b e^{\left (d x + c\right )} + 2 \, a + 2 \, \sqrt {a^{2} + b^{2}} \right |}}\right )}{\sqrt {a^{2} + b^{2}} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sinh(d*x+c)),x, algorithm="giac")

[Out]

log(abs(2*b*e^(d*x + c) + 2*a - 2*sqrt(a^2 + b^2))/abs(2*b*e^(d*x + c) + 2*a + 2*sqrt(a^2 + b^2)))/(sqrt(a^2 +
 b^2)*d)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 43, normalized size = 0.98 \[ \frac {2 \arctanh \left (\frac {2 a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-2 b}{2 \sqrt {a^{2}+b^{2}}}\right )}{d \sqrt {a^{2}+b^{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*sinh(d*x+c)),x)

[Out]

2/d/(a^2+b^2)^(1/2)*arctanh(1/2*(2*a*tanh(1/2*d*x+1/2*c)-2*b)/(a^2+b^2)^(1/2))

________________________________________________________________________________________

maxima [A]  time = 0.44, size = 67, normalized size = 1.52 \[ \frac {\log \left (\frac {b e^{\left (-d x - c\right )} - a - \sqrt {a^{2} + b^{2}}}{b e^{\left (-d x - c\right )} - a + \sqrt {a^{2} + b^{2}}}\right )}{\sqrt {a^{2} + b^{2}} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sinh(d*x+c)),x, algorithm="maxima")

[Out]

log((b*e^(-d*x - c) - a - sqrt(a^2 + b^2))/(b*e^(-d*x - c) - a + sqrt(a^2 + b^2)))/(sqrt(a^2 + b^2)*d)

________________________________________________________________________________________

mupad [B]  time = 0.76, size = 55, normalized size = 1.25 \[ \frac {2\,\mathrm {atan}\left (\frac {a\,d+b\,d\,{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c}{\sqrt {-a^2\,d^2-b^2\,d^2}}\right )}{\sqrt {-a^2\,d^2-b^2\,d^2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + b*sinh(c + d*x)),x)

[Out]

(2*atan((a*d + b*d*exp(d*x)*exp(c))/(- a^2*d^2 - b^2*d^2)^(1/2)))/(- a^2*d^2 - b^2*d^2)^(1/2)

________________________________________________________________________________________

sympy [A]  time = 8.95, size = 187, normalized size = 4.25 \[ \begin {cases} \frac {\log {\left (\tanh {\left (\frac {c}{2} + \frac {d x}{2} \right )} \right )}}{b d} & \text {for}\: a = 0 \\\frac {2 i \sqrt {b^{2}}}{b^{2} d \tanh {\left (\frac {c}{2} + \frac {d x}{2} \right )} - i b d \sqrt {b^{2}}} & \text {for}\: a = - \sqrt {- b^{2}} \\- \frac {2 i \sqrt {b^{2}}}{b^{2} d \tanh {\left (\frac {c}{2} + \frac {d x}{2} \right )} + i b d \sqrt {b^{2}}} & \text {for}\: a = \sqrt {- b^{2}} \\\frac {x}{a + b \sinh {\relax (c )}} & \text {for}\: d = 0 \\- \frac {\log {\left (\tanh {\left (\frac {c}{2} + \frac {d x}{2} \right )} - \frac {b}{a} - \frac {\sqrt {a^{2} + b^{2}}}{a} \right )}}{d \sqrt {a^{2} + b^{2}}} + \frac {\log {\left (\tanh {\left (\frac {c}{2} + \frac {d x}{2} \right )} - \frac {b}{a} + \frac {\sqrt {a^{2} + b^{2}}}{a} \right )}}{d \sqrt {a^{2} + b^{2}}} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sinh(d*x+c)),x)

[Out]

Piecewise((log(tanh(c/2 + d*x/2))/(b*d), Eq(a, 0)), (2*I*sqrt(b**2)/(b**2*d*tanh(c/2 + d*x/2) - I*b*d*sqrt(b**
2)), Eq(a, -sqrt(-b**2))), (-2*I*sqrt(b**2)/(b**2*d*tanh(c/2 + d*x/2) + I*b*d*sqrt(b**2)), Eq(a, sqrt(-b**2)))
, (x/(a + b*sinh(c)), Eq(d, 0)), (-log(tanh(c/2 + d*x/2) - b/a - sqrt(a**2 + b**2)/a)/(d*sqrt(a**2 + b**2)) +
log(tanh(c/2 + d*x/2) - b/a + sqrt(a**2 + b**2)/a)/(d*sqrt(a**2 + b**2)), True))

________________________________________________________________________________________