3.8 \(\int \sinh ^{\frac {5}{2}}(a+b x) \, dx\)

Optimal. Leaf size=80 \[ \frac {2 \sinh ^{\frac {3}{2}}(a+b x) \cosh (a+b x)}{5 b}+\frac {6 i \sqrt {\sinh (a+b x)} E\left (\left .\frac {1}{2} \left (i a+i b x-\frac {\pi }{2}\right )\right |2\right )}{5 b \sqrt {i \sinh (a+b x)}} \]

[Out]

2/5*cosh(b*x+a)*sinh(b*x+a)^(3/2)/b-6/5*I*(sin(1/2*I*a+1/4*Pi+1/2*I*b*x)^2)^(1/2)/sin(1/2*I*a+1/4*Pi+1/2*I*b*x
)*EllipticE(cos(1/2*I*a+1/4*Pi+1/2*I*b*x),2^(1/2))*sinh(b*x+a)^(1/2)/b/(I*sinh(b*x+a))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {2635, 2640, 2639} \[ \frac {2 \sinh ^{\frac {3}{2}}(a+b x) \cosh (a+b x)}{5 b}+\frac {6 i \sqrt {\sinh (a+b x)} E\left (\left .\frac {1}{2} \left (i a+i b x-\frac {\pi }{2}\right )\right |2\right )}{5 b \sqrt {i \sinh (a+b x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sinh[a + b*x]^(5/2),x]

[Out]

(((6*I)/5)*EllipticE[(I*a - Pi/2 + I*b*x)/2, 2]*Sqrt[Sinh[a + b*x]])/(b*Sqrt[I*Sinh[a + b*x]]) + (2*Cosh[a + b
*x]*Sinh[a + b*x]^(3/2))/(5*b)

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rubi steps

\begin {align*} \int \sinh ^{\frac {5}{2}}(a+b x) \, dx &=\frac {2 \cosh (a+b x) \sinh ^{\frac {3}{2}}(a+b x)}{5 b}-\frac {3}{5} \int \sqrt {\sinh (a+b x)} \, dx\\ &=\frac {2 \cosh (a+b x) \sinh ^{\frac {3}{2}}(a+b x)}{5 b}-\frac {\left (3 \sqrt {\sinh (a+b x)}\right ) \int \sqrt {i \sinh (a+b x)} \, dx}{5 \sqrt {i \sinh (a+b x)}}\\ &=\frac {6 i E\left (\left .\frac {1}{2} \left (i a-\frac {\pi }{2}+i b x\right )\right |2\right ) \sqrt {\sinh (a+b x)}}{5 b \sqrt {i \sinh (a+b x)}}+\frac {2 \cosh (a+b x) \sinh ^{\frac {3}{2}}(a+b x)}{5 b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 68, normalized size = 0.85 \[ \frac {\sinh (a+b x) \sinh (2 (a+b x))-6 \sqrt {i \sinh (a+b x)} E\left (\left .\frac {1}{4} (-2 i a-2 i b x+\pi )\right |2\right )}{5 b \sqrt {\sinh (a+b x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sinh[a + b*x]^(5/2),x]

[Out]

(-6*EllipticE[((-2*I)*a + Pi - (2*I)*b*x)/4, 2]*Sqrt[I*Sinh[a + b*x]] + Sinh[a + b*x]*Sinh[2*(a + b*x)])/(5*b*
Sqrt[Sinh[a + b*x]])

________________________________________________________________________________________

fricas [F]  time = 0.56, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\sinh \left (b x + a\right )^{\frac {5}{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(b*x+a)^(5/2),x, algorithm="fricas")

[Out]

integral(sinh(b*x + a)^(5/2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sinh \left (b x + a\right )^{\frac {5}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(b*x+a)^(5/2),x, algorithm="giac")

[Out]

integrate(sinh(b*x + a)^(5/2), x)

________________________________________________________________________________________

maple [A]  time = 0.07, size = 164, normalized size = 2.05 \[ \frac {-\frac {6 \sqrt {1-i \sinh \left (b x +a \right )}\, \sqrt {2}\, \sqrt {i \sinh \left (b x +a \right )+1}\, \sqrt {i \sinh \left (b x +a \right )}\, \EllipticE \left (\sqrt {1-i \sinh \left (b x +a \right )}, \frac {\sqrt {2}}{2}\right )}{5}+\frac {3 \sqrt {1-i \sinh \left (b x +a \right )}\, \sqrt {2}\, \sqrt {i \sinh \left (b x +a \right )+1}\, \sqrt {i \sinh \left (b x +a \right )}\, \EllipticF \left (\sqrt {1-i \sinh \left (b x +a \right )}, \frac {\sqrt {2}}{2}\right )}{5}+\frac {2 \left (\cosh ^{4}\left (b x +a \right )\right )}{5}-\frac {2 \left (\cosh ^{2}\left (b x +a \right )\right )}{5}}{\cosh \left (b x +a \right ) \sqrt {\sinh \left (b x +a \right )}\, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(b*x+a)^(5/2),x)

[Out]

(-6/5*(1-I*sinh(b*x+a))^(1/2)*2^(1/2)*(I*sinh(b*x+a)+1)^(1/2)*(I*sinh(b*x+a))^(1/2)*EllipticE((1-I*sinh(b*x+a)
)^(1/2),1/2*2^(1/2))+3/5*(1-I*sinh(b*x+a))^(1/2)*2^(1/2)*(I*sinh(b*x+a)+1)^(1/2)*(I*sinh(b*x+a))^(1/2)*Ellipti
cF((1-I*sinh(b*x+a))^(1/2),1/2*2^(1/2))+2/5*cosh(b*x+a)^4-2/5*cosh(b*x+a)^2)/cosh(b*x+a)/sinh(b*x+a)^(1/2)/b

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sinh \left (b x + a\right )^{\frac {5}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(b*x+a)^(5/2),x, algorithm="maxima")

[Out]

integrate(sinh(b*x + a)^(5/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\mathrm {sinh}\left (a+b\,x\right )}^{5/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(a + b*x)^(5/2),x)

[Out]

int(sinh(a + b*x)^(5/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sinh ^{\frac {5}{2}}{\left (a + b x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(b*x+a)**(5/2),x)

[Out]

Integral(sinh(a + b*x)**(5/2), x)

________________________________________________________________________________________