3.15 \(\int x^3 \cosh ^3(a+b x^2) \, dx\)

Optimal. Leaf size=79 \[ -\frac {\cosh ^3\left (a+b x^2\right )}{18 b^2}-\frac {\cosh \left (a+b x^2\right )}{3 b^2}+\frac {x^2 \sinh \left (a+b x^2\right )}{3 b}+\frac {x^2 \sinh \left (a+b x^2\right ) \cosh ^2\left (a+b x^2\right )}{6 b} \]

[Out]

-1/3*cosh(b*x^2+a)/b^2-1/18*cosh(b*x^2+a)^3/b^2+1/3*x^2*sinh(b*x^2+a)/b+1/6*x^2*cosh(b*x^2+a)^2*sinh(b*x^2+a)/
b

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 79, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {5321, 3310, 3296, 2638} \[ -\frac {\cosh ^3\left (a+b x^2\right )}{18 b^2}-\frac {\cosh \left (a+b x^2\right )}{3 b^2}+\frac {x^2 \sinh \left (a+b x^2\right )}{3 b}+\frac {x^2 \sinh \left (a+b x^2\right ) \cosh ^2\left (a+b x^2\right )}{6 b} \]

Antiderivative was successfully verified.

[In]

Int[x^3*Cosh[a + b*x^2]^3,x]

[Out]

-Cosh[a + b*x^2]/(3*b^2) - Cosh[a + b*x^2]^3/(18*b^2) + (x^2*Sinh[a + b*x^2])/(3*b) + (x^2*Cosh[a + b*x^2]^2*S
inh[a + b*x^2])/(6*b)

Rule 2638

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3296

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> -Simp[((c + d*x)^m*Cos[e + f*x])/f, x] +
Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]

Rule 3310

Int[((c_.) + (d_.)*(x_))*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(d*(b*Sin[e + f*x])^n)/(f^2*n
^2), x] + (Dist[(b^2*(n - 1))/n, Int[(c + d*x)*(b*Sin[e + f*x])^(n - 2), x], x] - Simp[(b*(c + d*x)*Cos[e + f*
x]*(b*Sin[e + f*x])^(n - 1))/(f*n), x]) /; FreeQ[{b, c, d, e, f}, x] && GtQ[n, 1]

Rule 5321

Int[((a_.) + Cosh[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simpli
fy[(m + 1)/n] - 1)*(a + b*Cosh[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IntegerQ[Sim
plify[(m + 1)/n]] && (EqQ[p, 1] || EqQ[m, n - 1] || (IntegerQ[p] && GtQ[Simplify[(m + 1)/n], 0]))

Rubi steps

\begin {align*} \int x^3 \cosh ^3\left (a+b x^2\right ) \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int x \cosh ^3(a+b x) \, dx,x,x^2\right )\\ &=-\frac {\cosh ^3\left (a+b x^2\right )}{18 b^2}+\frac {x^2 \cosh ^2\left (a+b x^2\right ) \sinh \left (a+b x^2\right )}{6 b}+\frac {1}{3} \operatorname {Subst}\left (\int x \cosh (a+b x) \, dx,x,x^2\right )\\ &=-\frac {\cosh ^3\left (a+b x^2\right )}{18 b^2}+\frac {x^2 \sinh \left (a+b x^2\right )}{3 b}+\frac {x^2 \cosh ^2\left (a+b x^2\right ) \sinh \left (a+b x^2\right )}{6 b}-\frac {\operatorname {Subst}\left (\int \sinh (a+b x) \, dx,x,x^2\right )}{3 b}\\ &=-\frac {\cosh \left (a+b x^2\right )}{3 b^2}-\frac {\cosh ^3\left (a+b x^2\right )}{18 b^2}+\frac {x^2 \sinh \left (a+b x^2\right )}{3 b}+\frac {x^2 \cosh ^2\left (a+b x^2\right ) \sinh \left (a+b x^2\right )}{6 b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.19, size = 55, normalized size = 0.70 \[ -\frac {-3 b x^2 \left (9 \sinh \left (a+b x^2\right )+\sinh \left (3 \left (a+b x^2\right )\right )\right )+27 \cosh \left (a+b x^2\right )+\cosh \left (3 \left (a+b x^2\right )\right )}{72 b^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3*Cosh[a + b*x^2]^3,x]

[Out]

-1/72*(27*Cosh[a + b*x^2] + Cosh[3*(a + b*x^2)] - 3*b*x^2*(9*Sinh[a + b*x^2] + Sinh[3*(a + b*x^2)]))/b^2

________________________________________________________________________________________

fricas [A]  time = 0.76, size = 96, normalized size = 1.22 \[ \frac {3 \, b x^{2} \sinh \left (b x^{2} + a\right )^{3} - \cosh \left (b x^{2} + a\right )^{3} - 3 \, \cosh \left (b x^{2} + a\right ) \sinh \left (b x^{2} + a\right )^{2} + 9 \, {\left (b x^{2} \cosh \left (b x^{2} + a\right )^{2} + 3 \, b x^{2}\right )} \sinh \left (b x^{2} + a\right ) - 27 \, \cosh \left (b x^{2} + a\right )}{72 \, b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*cosh(b*x^2+a)^3,x, algorithm="fricas")

[Out]

1/72*(3*b*x^2*sinh(b*x^2 + a)^3 - cosh(b*x^2 + a)^3 - 3*cosh(b*x^2 + a)*sinh(b*x^2 + a)^2 + 9*(b*x^2*cosh(b*x^
2 + a)^2 + 3*b*x^2)*sinh(b*x^2 + a) - 27*cosh(b*x^2 + a))/b^2

________________________________________________________________________________________

giac [B]  time = 0.14, size = 185, normalized size = 2.34 \[ \frac {3 \, {\left (b x^{2} + a\right )} e^{\left (3 \, b x^{2} + 3 \, a\right )} - 3 \, a e^{\left (3 \, b x^{2} + 3 \, a\right )} + 27 \, {\left (b x^{2} + a\right )} e^{\left (b x^{2} + a\right )} - 27 \, a e^{\left (b x^{2} + a\right )} - 27 \, {\left (b x^{2} + a\right )} e^{\left (-b x^{2} - a\right )} + 27 \, a e^{\left (-b x^{2} - a\right )} - 3 \, {\left (b x^{2} + a\right )} e^{\left (-3 \, b x^{2} - 3 \, a\right )} + 3 \, a e^{\left (-3 \, b x^{2} - 3 \, a\right )} - e^{\left (3 \, b x^{2} + 3 \, a\right )} - 27 \, e^{\left (b x^{2} + a\right )} - 27 \, e^{\left (-b x^{2} - a\right )} - e^{\left (-3 \, b x^{2} - 3 \, a\right )}}{144 \, b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*cosh(b*x^2+a)^3,x, algorithm="giac")

[Out]

1/144*(3*(b*x^2 + a)*e^(3*b*x^2 + 3*a) - 3*a*e^(3*b*x^2 + 3*a) + 27*(b*x^2 + a)*e^(b*x^2 + a) - 27*a*e^(b*x^2
+ a) - 27*(b*x^2 + a)*e^(-b*x^2 - a) + 27*a*e^(-b*x^2 - a) - 3*(b*x^2 + a)*e^(-3*b*x^2 - 3*a) + 3*a*e^(-3*b*x^
2 - 3*a) - e^(3*b*x^2 + 3*a) - 27*e^(b*x^2 + a) - 27*e^(-b*x^2 - a) - e^(-3*b*x^2 - 3*a))/b^2

________________________________________________________________________________________

maple [A]  time = 0.23, size = 93, normalized size = 1.18 \[ \frac {\left (3 b \,x^{2}-1\right ) {\mathrm e}^{3 b \,x^{2}+3 a}}{144 b^{2}}+\frac {3 \left (b \,x^{2}-1\right ) {\mathrm e}^{b \,x^{2}+a}}{16 b^{2}}-\frac {3 \left (b \,x^{2}+1\right ) {\mathrm e}^{-b \,x^{2}-a}}{16 b^{2}}-\frac {\left (3 b \,x^{2}+1\right ) {\mathrm e}^{-3 b \,x^{2}-3 a}}{144 b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*cosh(b*x^2+a)^3,x)

[Out]

1/144*(3*b*x^2-1)/b^2*exp(3*b*x^2+3*a)+3/16*(b*x^2-1)/b^2*exp(b*x^2+a)-3/16*(b*x^2+1)/b^2*exp(-b*x^2-a)-1/144*
(3*b*x^2+1)/b^2*exp(-3*b*x^2-3*a)

________________________________________________________________________________________

maxima [A]  time = 0.31, size = 100, normalized size = 1.27 \[ \frac {{\left (3 \, b x^{2} e^{\left (3 \, a\right )} - e^{\left (3 \, a\right )}\right )} e^{\left (3 \, b x^{2}\right )}}{144 \, b^{2}} + \frac {3 \, {\left (b x^{2} e^{a} - e^{a}\right )} e^{\left (b x^{2}\right )}}{16 \, b^{2}} - \frac {3 \, {\left (b x^{2} + 1\right )} e^{\left (-b x^{2} - a\right )}}{16 \, b^{2}} - \frac {{\left (3 \, b x^{2} + 1\right )} e^{\left (-3 \, b x^{2} - 3 \, a\right )}}{144 \, b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*cosh(b*x^2+a)^3,x, algorithm="maxima")

[Out]

1/144*(3*b*x^2*e^(3*a) - e^(3*a))*e^(3*b*x^2)/b^2 + 3/16*(b*x^2*e^a - e^a)*e^(b*x^2)/b^2 - 3/16*(b*x^2 + 1)*e^
(-b*x^2 - a)/b^2 - 1/144*(3*b*x^2 + 1)*e^(-3*b*x^2 - 3*a)/b^2

________________________________________________________________________________________

mupad [B]  time = 0.96, size = 70, normalized size = 0.89 \[ \frac {\frac {x^2\,\mathrm {sinh}\left (b\,x^2+a\right )}{3}+\frac {x^2\,{\mathrm {cosh}\left (b\,x^2+a\right )}^2\,\mathrm {sinh}\left (b\,x^2+a\right )}{6}}{b}-\frac {{\mathrm {cosh}\left (b\,x^2+a\right )}^3}{18\,b^2}-\frac {\mathrm {cosh}\left (b\,x^2+a\right )}{3\,b^2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*cosh(a + b*x^2)^3,x)

[Out]

((x^2*sinh(a + b*x^2))/3 + (x^2*cosh(a + b*x^2)^2*sinh(a + b*x^2))/6)/b - cosh(a + b*x^2)^3/(18*b^2) - cosh(a
+ b*x^2)/(3*b^2)

________________________________________________________________________________________

sympy [A]  time = 2.80, size = 92, normalized size = 1.16 \[ \begin {cases} - \frac {x^{2} \sinh ^{3}{\left (a + b x^{2} \right )}}{3 b} + \frac {x^{2} \sinh {\left (a + b x^{2} \right )} \cosh ^{2}{\left (a + b x^{2} \right )}}{2 b} + \frac {\sinh ^{2}{\left (a + b x^{2} \right )} \cosh {\left (a + b x^{2} \right )}}{3 b^{2}} - \frac {7 \cosh ^{3}{\left (a + b x^{2} \right )}}{18 b^{2}} & \text {for}\: b \neq 0 \\\frac {x^{4} \cosh ^{3}{\relax (a )}}{4} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*cosh(b*x**2+a)**3,x)

[Out]

Piecewise((-x**2*sinh(a + b*x**2)**3/(3*b) + x**2*sinh(a + b*x**2)*cosh(a + b*x**2)**2/(2*b) + sinh(a + b*x**2
)**2*cosh(a + b*x**2)/(3*b**2) - 7*cosh(a + b*x**2)**3/(18*b**2), Ne(b, 0)), (x**4*cosh(a)**3/4, True))

________________________________________________________________________________________