3.171 \(\int \frac {(1-a^2 x^2) \tanh ^{-1}(a x)}{x^6} \, dx\)

Optimal. Leaf size=71 \[ -\frac {2}{15} a^5 \log (x)+\frac {a^3}{15 x^2}+\frac {a^2 \tanh ^{-1}(a x)}{3 x^3}+\frac {1}{15} a^5 \log \left (1-a^2 x^2\right )-\frac {\tanh ^{-1}(a x)}{5 x^5}-\frac {a}{20 x^4} \]

[Out]

-1/20*a/x^4+1/15*a^3/x^2-1/5*arctanh(a*x)/x^5+1/3*a^2*arctanh(a*x)/x^3-2/15*a^5*ln(x)+1/15*a^5*ln(-a^2*x^2+1)

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 71, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 4, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {6014, 5916, 266, 44} \[ \frac {a^3}{15 x^2}+\frac {1}{15} a^5 \log \left (1-a^2 x^2\right )+\frac {a^2 \tanh ^{-1}(a x)}{3 x^3}-\frac {2}{15} a^5 \log (x)-\frac {a}{20 x^4}-\frac {\tanh ^{-1}(a x)}{5 x^5} \]

Antiderivative was successfully verified.

[In]

Int[((1 - a^2*x^2)*ArcTanh[a*x])/x^6,x]

[Out]

-a/(20*x^4) + a^3/(15*x^2) - ArcTanh[a*x]/(5*x^5) + (a^2*ArcTanh[a*x])/(3*x^3) - (2*a^5*Log[x])/15 + (a^5*Log[
1 - a^2*x^2])/15

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 5916

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcT
anh[c*x])^p)/(d*(m + 1)), x] - Dist[(b*c*p)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcTanh[c*x])^(p - 1))/(1 -
 c^2*x^2), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[p, 0] && (EqQ[p, 1] || IntegerQ[m]) && NeQ[m, -1]

Rule 6014

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Dist
[d, Int[(f*x)^m*(d + e*x^2)^(q - 1)*(a + b*ArcTanh[c*x])^p, x], x] - Dist[(c^2*d)/f^2, Int[(f*x)^(m + 2)*(d +
e*x^2)^(q - 1)*(a + b*ArcTanh[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[q
, 0] && IGtQ[p, 0] && (RationalQ[m] || (EqQ[p, 1] && IntegerQ[q]))

Rubi steps

\begin {align*} \int \frac {\left (1-a^2 x^2\right ) \tanh ^{-1}(a x)}{x^6} \, dx &=-\left (a^2 \int \frac {\tanh ^{-1}(a x)}{x^4} \, dx\right )+\int \frac {\tanh ^{-1}(a x)}{x^6} \, dx\\ &=-\frac {\tanh ^{-1}(a x)}{5 x^5}+\frac {a^2 \tanh ^{-1}(a x)}{3 x^3}+\frac {1}{5} a \int \frac {1}{x^5 \left (1-a^2 x^2\right )} \, dx-\frac {1}{3} a^3 \int \frac {1}{x^3 \left (1-a^2 x^2\right )} \, dx\\ &=-\frac {\tanh ^{-1}(a x)}{5 x^5}+\frac {a^2 \tanh ^{-1}(a x)}{3 x^3}+\frac {1}{10} a \operatorname {Subst}\left (\int \frac {1}{x^3 \left (1-a^2 x\right )} \, dx,x,x^2\right )-\frac {1}{6} a^3 \operatorname {Subst}\left (\int \frac {1}{x^2 \left (1-a^2 x\right )} \, dx,x,x^2\right )\\ &=-\frac {\tanh ^{-1}(a x)}{5 x^5}+\frac {a^2 \tanh ^{-1}(a x)}{3 x^3}+\frac {1}{10} a \operatorname {Subst}\left (\int \left (\frac {1}{x^3}+\frac {a^2}{x^2}+\frac {a^4}{x}-\frac {a^6}{-1+a^2 x}\right ) \, dx,x,x^2\right )-\frac {1}{6} a^3 \operatorname {Subst}\left (\int \left (\frac {1}{x^2}+\frac {a^2}{x}-\frac {a^4}{-1+a^2 x}\right ) \, dx,x,x^2\right )\\ &=-\frac {a}{20 x^4}+\frac {a^3}{15 x^2}-\frac {\tanh ^{-1}(a x)}{5 x^5}+\frac {a^2 \tanh ^{-1}(a x)}{3 x^3}-\frac {2}{15} a^5 \log (x)+\frac {1}{15} a^5 \log \left (1-a^2 x^2\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 71, normalized size = 1.00 \[ -\frac {2}{15} a^5 \log (x)+\frac {a^3}{15 x^2}+\frac {a^2 \tanh ^{-1}(a x)}{3 x^3}+\frac {1}{15} a^5 \log \left (1-a^2 x^2\right )-\frac {\tanh ^{-1}(a x)}{5 x^5}-\frac {a}{20 x^4} \]

Antiderivative was successfully verified.

[In]

Integrate[((1 - a^2*x^2)*ArcTanh[a*x])/x^6,x]

[Out]

-1/20*a/x^4 + a^3/(15*x^2) - ArcTanh[a*x]/(5*x^5) + (a^2*ArcTanh[a*x])/(3*x^3) - (2*a^5*Log[x])/15 + (a^5*Log[
1 - a^2*x^2])/15

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 73, normalized size = 1.03 \[ \frac {4 \, a^{5} x^{5} \log \left (a^{2} x^{2} - 1\right ) - 8 \, a^{5} x^{5} \log \relax (x) + 4 \, a^{3} x^{3} - 3 \, a x + 2 \, {\left (5 \, a^{2} x^{2} - 3\right )} \log \left (-\frac {a x + 1}{a x - 1}\right )}{60 \, x^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)*arctanh(a*x)/x^6,x, algorithm="fricas")

[Out]

1/60*(4*a^5*x^5*log(a^2*x^2 - 1) - 8*a^5*x^5*log(x) + 4*a^3*x^3 - 3*a*x + 2*(5*a^2*x^2 - 3)*log(-(a*x + 1)/(a*
x - 1)))/x^5

________________________________________________________________________________________

giac [B]  time = 0.21, size = 281, normalized size = 3.96 \[ \frac {2}{15} \, {\left (a^{4} \log \left (\frac {{\left | -a x - 1 \right |}}{{\left | a x - 1 \right |}}\right ) - a^{4} \log \left ({\left | -\frac {a x + 1}{a x - 1} - 1 \right |}\right ) + \frac {\frac {{\left (a x + 1\right )}^{3} a^{4}}{{\left (a x - 1\right )}^{3}} - \frac {4 \, {\left (a x + 1\right )}^{2} a^{4}}{{\left (a x - 1\right )}^{2}} + \frac {{\left (a x + 1\right )} a^{4}}{a x - 1}}{{\left (\frac {a x + 1}{a x - 1} + 1\right )}^{4}} - \frac {{\left (\frac {15 \, {\left (a x + 1\right )}^{3} a^{4}}{{\left (a x - 1\right )}^{3}} - \frac {5 \, {\left (a x + 1\right )}^{2} a^{4}}{{\left (a x - 1\right )}^{2}} + \frac {5 \, {\left (a x + 1\right )} a^{4}}{a x - 1} + a^{4}\right )} \log \left (-\frac {\frac {a {\left (\frac {a x + 1}{a x - 1} + 1\right )}}{\frac {{\left (a x + 1\right )} a}{a x - 1} - a} + 1}{\frac {a {\left (\frac {a x + 1}{a x - 1} + 1\right )}}{\frac {{\left (a x + 1\right )} a}{a x - 1} - a} - 1}\right )}{{\left (\frac {a x + 1}{a x - 1} + 1\right )}^{5}}\right )} a \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)*arctanh(a*x)/x^6,x, algorithm="giac")

[Out]

2/15*(a^4*log(abs(-a*x - 1)/abs(a*x - 1)) - a^4*log(abs(-(a*x + 1)/(a*x - 1) - 1)) + ((a*x + 1)^3*a^4/(a*x - 1
)^3 - 4*(a*x + 1)^2*a^4/(a*x - 1)^2 + (a*x + 1)*a^4/(a*x - 1))/((a*x + 1)/(a*x - 1) + 1)^4 - (15*(a*x + 1)^3*a
^4/(a*x - 1)^3 - 5*(a*x + 1)^2*a^4/(a*x - 1)^2 + 5*(a*x + 1)*a^4/(a*x - 1) + a^4)*log(-(a*((a*x + 1)/(a*x - 1)
 + 1)/((a*x + 1)*a/(a*x - 1) - a) + 1)/(a*((a*x + 1)/(a*x - 1) + 1)/((a*x + 1)*a/(a*x - 1) - a) - 1))/((a*x +
1)/(a*x - 1) + 1)^5)*a

________________________________________________________________________________________

maple [A]  time = 0.04, size = 68, normalized size = 0.96 \[ \frac {a^{2} \arctanh \left (a x \right )}{3 x^{3}}-\frac {\arctanh \left (a x \right )}{5 x^{5}}-\frac {a}{20 x^{4}}+\frac {a^{3}}{15 x^{2}}-\frac {2 a^{5} \ln \left (a x \right )}{15}+\frac {a^{5} \ln \left (a x -1\right )}{15}+\frac {a^{5} \ln \left (a x +1\right )}{15} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a^2*x^2+1)*arctanh(a*x)/x^6,x)

[Out]

1/3*a^2*arctanh(a*x)/x^3-1/5*arctanh(a*x)/x^5-1/20*a/x^4+1/15*a^3/x^2-2/15*a^5*ln(a*x)+1/15*a^5*ln(a*x-1)+1/15
*a^5*ln(a*x+1)

________________________________________________________________________________________

maxima [A]  time = 0.32, size = 62, normalized size = 0.87 \[ \frac {1}{60} \, {\left (4 \, a^{4} \log \left (a^{2} x^{2} - 1\right ) - 4 \, a^{4} \log \left (x^{2}\right ) + \frac {4 \, a^{2} x^{2} - 3}{x^{4}}\right )} a + \frac {{\left (5 \, a^{2} x^{2} - 3\right )} \operatorname {artanh}\left (a x\right )}{15 \, x^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)*arctanh(a*x)/x^6,x, algorithm="maxima")

[Out]

1/60*(4*a^4*log(a^2*x^2 - 1) - 4*a^4*log(x^2) + (4*a^2*x^2 - 3)/x^4)*a + 1/15*(5*a^2*x^2 - 3)*arctanh(a*x)/x^5

________________________________________________________________________________________

mupad [B]  time = 0.88, size = 59, normalized size = 0.83 \[ \frac {a^5\,\ln \left (a^2\,x^2-1\right )}{15}-\frac {\frac {\mathrm {atanh}\left (a\,x\right )}{5}+\frac {a\,x}{20}-\frac {a^3\,x^3}{15}-\frac {a^2\,x^2\,\mathrm {atanh}\left (a\,x\right )}{3}}{x^5}-\frac {2\,a^5\,\ln \relax (x)}{15} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(atanh(a*x)*(a^2*x^2 - 1))/x^6,x)

[Out]

(a^5*log(a^2*x^2 - 1))/15 - (atanh(a*x)/5 + (a*x)/20 - (a^3*x^3)/15 - (a^2*x^2*atanh(a*x))/3)/x^5 - (2*a^5*log
(x))/15

________________________________________________________________________________________

sympy [A]  time = 1.88, size = 75, normalized size = 1.06 \[ \begin {cases} - \frac {2 a^{5} \log {\relax (x )}}{15} + \frac {2 a^{5} \log {\left (x - \frac {1}{a} \right )}}{15} + \frac {2 a^{5} \operatorname {atanh}{\left (a x \right )}}{15} + \frac {a^{3}}{15 x^{2}} + \frac {a^{2} \operatorname {atanh}{\left (a x \right )}}{3 x^{3}} - \frac {a}{20 x^{4}} - \frac {\operatorname {atanh}{\left (a x \right )}}{5 x^{5}} & \text {for}\: a \neq 0 \\0 & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a**2*x**2+1)*atanh(a*x)/x**6,x)

[Out]

Piecewise((-2*a**5*log(x)/15 + 2*a**5*log(x - 1/a)/15 + 2*a**5*atanh(a*x)/15 + a**3/(15*x**2) + a**2*atanh(a*x
)/(3*x**3) - a/(20*x**4) - atanh(a*x)/(5*x**5), Ne(a, 0)), (0, True))

________________________________________________________________________________________