3.200 \(\int \frac {(1-a^2 x^2)^2 \tanh ^{-1}(a x)}{x^4} \, dx\)

Optimal. Leaf size=68 \[ a^4 x \tanh ^{-1}(a x)-\frac {5}{3} a^3 \log (x)+\frac {2 a^2 \tanh ^{-1}(a x)}{x}+\frac {4}{3} a^3 \log \left (1-a^2 x^2\right )-\frac {\tanh ^{-1}(a x)}{3 x^3}-\frac {a}{6 x^2} \]

[Out]

-1/6*a/x^2-1/3*arctanh(a*x)/x^3+2*a^2*arctanh(a*x)/x+a^4*x*arctanh(a*x)-5/3*a^3*ln(x)+4/3*a^3*ln(-a^2*x^2+1)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 68, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 9, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.450, Rules used = {6012, 5910, 260, 5916, 266, 44, 36, 29, 31} \[ \frac {4}{3} a^3 \log \left (1-a^2 x^2\right )-\frac {5}{3} a^3 \log (x)+a^4 x \tanh ^{-1}(a x)+\frac {2 a^2 \tanh ^{-1}(a x)}{x}-\frac {a}{6 x^2}-\frac {\tanh ^{-1}(a x)}{3 x^3} \]

Antiderivative was successfully verified.

[In]

Int[((1 - a^2*x^2)^2*ArcTanh[a*x])/x^4,x]

[Out]

-a/(6*x^2) - ArcTanh[a*x]/(3*x^3) + (2*a^2*ArcTanh[a*x])/x + a^4*x*ArcTanh[a*x] - (5*a^3*Log[x])/3 + (4*a^3*Lo
g[1 - a^2*x^2])/3

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 36

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x), x], x] -
Dist[d/(b*c - a*d), Int[1/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 5910

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*ArcTanh[c*x])^p, x] - Dist[b*c*p, In
t[(x*(a + b*ArcTanh[c*x])^(p - 1))/(1 - c^2*x^2), x], x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 0]

Rule 5916

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcT
anh[c*x])^p)/(d*(m + 1)), x] - Dist[(b*c*p)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcTanh[c*x])^(p - 1))/(1 -
 c^2*x^2), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[p, 0] && (EqQ[p, 1] || IntegerQ[m]) && NeQ[m, -1]

Rule 6012

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Int[E
xpandIntegrand[(f*x)^m*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[
c^2*d + e, 0] && IGtQ[p, 0] && IGtQ[q, 1]

Rubi steps

\begin {align*} \int \frac {\left (1-a^2 x^2\right )^2 \tanh ^{-1}(a x)}{x^4} \, dx &=\int \left (a^4 \tanh ^{-1}(a x)+\frac {\tanh ^{-1}(a x)}{x^4}-\frac {2 a^2 \tanh ^{-1}(a x)}{x^2}\right ) \, dx\\ &=-\left (\left (2 a^2\right ) \int \frac {\tanh ^{-1}(a x)}{x^2} \, dx\right )+a^4 \int \tanh ^{-1}(a x) \, dx+\int \frac {\tanh ^{-1}(a x)}{x^4} \, dx\\ &=-\frac {\tanh ^{-1}(a x)}{3 x^3}+\frac {2 a^2 \tanh ^{-1}(a x)}{x}+a^4 x \tanh ^{-1}(a x)+\frac {1}{3} a \int \frac {1}{x^3 \left (1-a^2 x^2\right )} \, dx-\left (2 a^3\right ) \int \frac {1}{x \left (1-a^2 x^2\right )} \, dx-a^5 \int \frac {x}{1-a^2 x^2} \, dx\\ &=-\frac {\tanh ^{-1}(a x)}{3 x^3}+\frac {2 a^2 \tanh ^{-1}(a x)}{x}+a^4 x \tanh ^{-1}(a x)+\frac {1}{2} a^3 \log \left (1-a^2 x^2\right )+\frac {1}{6} a \operatorname {Subst}\left (\int \frac {1}{x^2 \left (1-a^2 x\right )} \, dx,x,x^2\right )-a^3 \operatorname {Subst}\left (\int \frac {1}{x \left (1-a^2 x\right )} \, dx,x,x^2\right )\\ &=-\frac {\tanh ^{-1}(a x)}{3 x^3}+\frac {2 a^2 \tanh ^{-1}(a x)}{x}+a^4 x \tanh ^{-1}(a x)+\frac {1}{2} a^3 \log \left (1-a^2 x^2\right )+\frac {1}{6} a \operatorname {Subst}\left (\int \left (\frac {1}{x^2}+\frac {a^2}{x}-\frac {a^4}{-1+a^2 x}\right ) \, dx,x,x^2\right )-a^3 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,x^2\right )-a^5 \operatorname {Subst}\left (\int \frac {1}{1-a^2 x} \, dx,x,x^2\right )\\ &=-\frac {a}{6 x^2}-\frac {\tanh ^{-1}(a x)}{3 x^3}+\frac {2 a^2 \tanh ^{-1}(a x)}{x}+a^4 x \tanh ^{-1}(a x)-\frac {5}{3} a^3 \log (x)+\frac {4}{3} a^3 \log \left (1-a^2 x^2\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 68, normalized size = 1.00 \[ a^4 x \tanh ^{-1}(a x)-\frac {5}{3} a^3 \log (x)+\frac {2 a^2 \tanh ^{-1}(a x)}{x}+\frac {4}{3} a^3 \log \left (1-a^2 x^2\right )-\frac {\tanh ^{-1}(a x)}{3 x^3}-\frac {a}{6 x^2} \]

Antiderivative was successfully verified.

[In]

Integrate[((1 - a^2*x^2)^2*ArcTanh[a*x])/x^4,x]

[Out]

-1/6*a/x^2 - ArcTanh[a*x]/(3*x^3) + (2*a^2*ArcTanh[a*x])/x + a^4*x*ArcTanh[a*x] - (5*a^3*Log[x])/3 + (4*a^3*Lo
g[1 - a^2*x^2])/3

________________________________________________________________________________________

fricas [A]  time = 0.71, size = 72, normalized size = 1.06 \[ \frac {8 \, a^{3} x^{3} \log \left (a^{2} x^{2} - 1\right ) - 10 \, a^{3} x^{3} \log \relax (x) - a x + {\left (3 \, a^{4} x^{4} + 6 \, a^{2} x^{2} - 1\right )} \log \left (-\frac {a x + 1}{a x - 1}\right )}{6 \, x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)^2*arctanh(a*x)/x^4,x, algorithm="fricas")

[Out]

1/6*(8*a^3*x^3*log(a^2*x^2 - 1) - 10*a^3*x^3*log(x) - a*x + (3*a^4*x^4 + 6*a^2*x^2 - 1)*log(-(a*x + 1)/(a*x -
1)))/x^3

________________________________________________________________________________________

giac [B]  time = 0.23, size = 274, normalized size = 4.03 \[ \frac {1}{3} \, {\left (8 \, a^{2} \log \left (\frac {{\left | -a x - 1 \right |}}{{\left | a x - 1 \right |}}\right ) - 3 \, a^{2} \log \left ({\left | -\frac {a x + 1}{a x - 1} + 1 \right |}\right ) - 5 \, a^{2} \log \left ({\left | -\frac {a x + 1}{a x - 1} - 1 \right |}\right ) + {\left (\frac {3 \, a^{2}}{\frac {a x + 1}{a x - 1} - 1} - \frac {\frac {3 \, {\left (a x + 1\right )}^{2} a^{2}}{{\left (a x - 1\right )}^{2}} + \frac {12 \, {\left (a x + 1\right )} a^{2}}{a x - 1} + 5 \, a^{2}}{{\left (\frac {a x + 1}{a x - 1} + 1\right )}^{3}}\right )} \log \left (-\frac {\frac {a {\left (\frac {a x + 1}{a x - 1} + 1\right )}}{\frac {{\left (a x + 1\right )} a}{a x - 1} - a} + 1}{\frac {a {\left (\frac {a x + 1}{a x - 1} + 1\right )}}{\frac {{\left (a x + 1\right )} a}{a x - 1} - a} - 1}\right ) + \frac {2 \, {\left (a x + 1\right )} a^{2}}{{\left (a x - 1\right )} {\left (\frac {a x + 1}{a x - 1} + 1\right )}^{2}}\right )} a \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)^2*arctanh(a*x)/x^4,x, algorithm="giac")

[Out]

1/3*(8*a^2*log(abs(-a*x - 1)/abs(a*x - 1)) - 3*a^2*log(abs(-(a*x + 1)/(a*x - 1) + 1)) - 5*a^2*log(abs(-(a*x +
1)/(a*x - 1) - 1)) + (3*a^2/((a*x + 1)/(a*x - 1) - 1) - (3*(a*x + 1)^2*a^2/(a*x - 1)^2 + 12*(a*x + 1)*a^2/(a*x
 - 1) + 5*a^2)/((a*x + 1)/(a*x - 1) + 1)^3)*log(-(a*((a*x + 1)/(a*x - 1) + 1)/((a*x + 1)*a/(a*x - 1) - a) + 1)
/(a*((a*x + 1)/(a*x - 1) + 1)/((a*x + 1)*a/(a*x - 1) - a) - 1)) + 2*(a*x + 1)*a^2/((a*x - 1)*((a*x + 1)/(a*x -
 1) + 1)^2))*a

________________________________________________________________________________________

maple [A]  time = 0.04, size = 69, normalized size = 1.01 \[ a^{4} x \arctanh \left (a x \right )+\frac {2 a^{2} \arctanh \left (a x \right )}{x}-\frac {\arctanh \left (a x \right )}{3 x^{3}}-\frac {a}{6 x^{2}}-\frac {5 a^{3} \ln \left (a x \right )}{3}+\frac {4 a^{3} \ln \left (a x -1\right )}{3}+\frac {4 a^{3} \ln \left (a x +1\right )}{3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a^2*x^2+1)^2*arctanh(a*x)/x^4,x)

[Out]

a^4*x*arctanh(a*x)+2*a^2*arctanh(a*x)/x-1/3*arctanh(a*x)/x^3-1/6*a/x^2-5/3*a^3*ln(a*x)+4/3*a^3*ln(a*x-1)+4/3*a
^3*ln(a*x+1)

________________________________________________________________________________________

maxima [A]  time = 0.30, size = 66, normalized size = 0.97 \[ \frac {1}{6} \, {\left (8 \, a^{2} \log \left (a x + 1\right ) + 8 \, a^{2} \log \left (a x - 1\right ) - 10 \, a^{2} \log \relax (x) - \frac {1}{x^{2}}\right )} a + \frac {1}{3} \, {\left (3 \, a^{4} x + \frac {6 \, a^{2} x^{2} - 1}{x^{3}}\right )} \operatorname {artanh}\left (a x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)^2*arctanh(a*x)/x^4,x, algorithm="maxima")

[Out]

1/6*(8*a^2*log(a*x + 1) + 8*a^2*log(a*x - 1) - 10*a^2*log(x) - 1/x^2)*a + 1/3*(3*a^4*x + (6*a^2*x^2 - 1)/x^3)*
arctanh(a*x)

________________________________________________________________________________________

mupad [B]  time = 0.88, size = 59, normalized size = 0.87 \[ \frac {4\,a^3\,\ln \left (a^2\,x^2-1\right )}{3}-\frac {a}{6\,x^2}-\frac {\mathrm {atanh}\left (a\,x\right )}{3\,x^3}-\frac {5\,a^3\,\ln \relax (x)}{3}+a^4\,x\,\mathrm {atanh}\left (a\,x\right )+\frac {2\,a^2\,\mathrm {atanh}\left (a\,x\right )}{x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((atanh(a*x)*(a^2*x^2 - 1)^2)/x^4,x)

[Out]

(4*a^3*log(a^2*x^2 - 1))/3 - a/(6*x^2) - atanh(a*x)/(3*x^3) - (5*a^3*log(x))/3 + a^4*x*atanh(a*x) + (2*a^2*ata
nh(a*x))/x

________________________________________________________________________________________

sympy [A]  time = 1.53, size = 75, normalized size = 1.10 \[ \begin {cases} a^{4} x \operatorname {atanh}{\left (a x \right )} - \frac {5 a^{3} \log {\relax (x )}}{3} + \frac {8 a^{3} \log {\left (x - \frac {1}{a} \right )}}{3} + \frac {8 a^{3} \operatorname {atanh}{\left (a x \right )}}{3} + \frac {2 a^{2} \operatorname {atanh}{\left (a x \right )}}{x} - \frac {a}{6 x^{2}} - \frac {\operatorname {atanh}{\left (a x \right )}}{3 x^{3}} & \text {for}\: a \neq 0 \\0 & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a**2*x**2+1)**2*atanh(a*x)/x**4,x)

[Out]

Piecewise((a**4*x*atanh(a*x) - 5*a**3*log(x)/3 + 8*a**3*log(x - 1/a)/3 + 8*a**3*atanh(a*x)/3 + 2*a**2*atanh(a*
x)/x - a/(6*x**2) - atanh(a*x)/(3*x**3), Ne(a, 0)), (0, True))

________________________________________________________________________________________