3.332 \(\int \frac {x^2}{(1-a^2 x^2)^3 \tanh ^{-1}(a x)^2} \, dx\)

Optimal. Leaf size=41 \[ \frac {\text {Shi}\left (4 \tanh ^{-1}(a x)\right )}{2 a^3}-\frac {x^2}{a \left (1-a^2 x^2\right )^2 \tanh ^{-1}(a x)} \]

[Out]

-x^2/a/(-a^2*x^2+1)^2/arctanh(a*x)+1/2*Shi(4*arctanh(a*x))/a^3

________________________________________________________________________________________

Rubi [A]  time = 0.29, antiderivative size = 60, normalized size of antiderivative = 1.46, number of steps used = 12, number of rules used = 6, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {6028, 5966, 6034, 5448, 12, 3298} \[ \frac {\text {Shi}\left (4 \tanh ^{-1}(a x)\right )}{2 a^3}+\frac {1}{a^3 \left (1-a^2 x^2\right ) \tanh ^{-1}(a x)}-\frac {1}{a^3 \left (1-a^2 x^2\right )^2 \tanh ^{-1}(a x)} \]

Antiderivative was successfully verified.

[In]

Int[x^2/((1 - a^2*x^2)^3*ArcTanh[a*x]^2),x]

[Out]

-(1/(a^3*(1 - a^2*x^2)^2*ArcTanh[a*x])) + 1/(a^3*(1 - a^2*x^2)*ArcTanh[a*x]) + SinhIntegral[4*ArcTanh[a*x]]/(2
*a^3)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3298

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(I*SinhIntegral[(c*f*fz)
/d + f*fz*x])/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 5448

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 5966

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[((d + e*x^2)^(q + 1
)*(a + b*ArcTanh[c*x])^(p + 1))/(b*c*d*(p + 1)), x] + Dist[(2*c*(q + 1))/(b*(p + 1)), Int[x*(d + e*x^2)^q*(a +
 b*ArcTanh[c*x])^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[q, -1] && LtQ[p, -1]

Rule 6028

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[1/e, Int
[x^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^p, x], x] - Dist[d/e, Int[x^(m - 2)*(d + e*x^2)^q*(a + b*A
rcTanh[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IntegersQ[p, 2*q] && LtQ[q, -1] &&
 IGtQ[m, 1] && NeQ[p, -1]

Rule 6034

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[d^q/c^(
m + 1), Subst[Int[((a + b*x)^p*Sinh[x]^m)/Cosh[x]^(m + 2*(q + 1)), x], x, ArcTanh[c*x]], x] /; FreeQ[{a, b, c,
 d, e, p}, x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && (IntegerQ[q] || GtQ[d, 0])

Rubi steps

\begin {align*} \int \frac {x^2}{\left (1-a^2 x^2\right )^3 \tanh ^{-1}(a x)^2} \, dx &=\frac {\int \frac {1}{\left (1-a^2 x^2\right )^3 \tanh ^{-1}(a x)^2} \, dx}{a^2}-\frac {\int \frac {1}{\left (1-a^2 x^2\right )^2 \tanh ^{-1}(a x)^2} \, dx}{a^2}\\ &=-\frac {1}{a^3 \left (1-a^2 x^2\right )^2 \tanh ^{-1}(a x)}+\frac {1}{a^3 \left (1-a^2 x^2\right ) \tanh ^{-1}(a x)}-\frac {2 \int \frac {x}{\left (1-a^2 x^2\right )^2 \tanh ^{-1}(a x)} \, dx}{a}+\frac {4 \int \frac {x}{\left (1-a^2 x^2\right )^3 \tanh ^{-1}(a x)} \, dx}{a}\\ &=-\frac {1}{a^3 \left (1-a^2 x^2\right )^2 \tanh ^{-1}(a x)}+\frac {1}{a^3 \left (1-a^2 x^2\right ) \tanh ^{-1}(a x)}-\frac {2 \operatorname {Subst}\left (\int \frac {\cosh (x) \sinh (x)}{x} \, dx,x,\tanh ^{-1}(a x)\right )}{a^3}+\frac {4 \operatorname {Subst}\left (\int \frac {\cosh ^3(x) \sinh (x)}{x} \, dx,x,\tanh ^{-1}(a x)\right )}{a^3}\\ &=-\frac {1}{a^3 \left (1-a^2 x^2\right )^2 \tanh ^{-1}(a x)}+\frac {1}{a^3 \left (1-a^2 x^2\right ) \tanh ^{-1}(a x)}-\frac {2 \operatorname {Subst}\left (\int \frac {\sinh (2 x)}{2 x} \, dx,x,\tanh ^{-1}(a x)\right )}{a^3}+\frac {4 \operatorname {Subst}\left (\int \left (\frac {\sinh (2 x)}{4 x}+\frac {\sinh (4 x)}{8 x}\right ) \, dx,x,\tanh ^{-1}(a x)\right )}{a^3}\\ &=-\frac {1}{a^3 \left (1-a^2 x^2\right )^2 \tanh ^{-1}(a x)}+\frac {1}{a^3 \left (1-a^2 x^2\right ) \tanh ^{-1}(a x)}+\frac {\operatorname {Subst}\left (\int \frac {\sinh (4 x)}{x} \, dx,x,\tanh ^{-1}(a x)\right )}{2 a^3}\\ &=-\frac {1}{a^3 \left (1-a^2 x^2\right )^2 \tanh ^{-1}(a x)}+\frac {1}{a^3 \left (1-a^2 x^2\right ) \tanh ^{-1}(a x)}+\frac {\text {Shi}\left (4 \tanh ^{-1}(a x)\right )}{2 a^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.21, size = 56, normalized size = 1.37 \[ \frac {\left (a^2 x^2-1\right )^2 \tanh ^{-1}(a x) \text {Shi}\left (4 \tanh ^{-1}(a x)\right )-2 a^2 x^2}{2 a^3 \left (a^2 x^2-1\right )^2 \tanh ^{-1}(a x)} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/((1 - a^2*x^2)^3*ArcTanh[a*x]^2),x]

[Out]

(-2*a^2*x^2 + (-1 + a^2*x^2)^2*ArcTanh[a*x]*SinhIntegral[4*ArcTanh[a*x]])/(2*a^3*(-1 + a^2*x^2)^2*ArcTanh[a*x]
)

________________________________________________________________________________________

fricas [B]  time = 0.62, size = 164, normalized size = 4.00 \[ -\frac {8 \, a^{2} x^{2} - {\left ({\left (a^{4} x^{4} - 2 \, a^{2} x^{2} + 1\right )} \operatorname {log\_integral}\left (\frac {a^{2} x^{2} + 2 \, a x + 1}{a^{2} x^{2} - 2 \, a x + 1}\right ) - {\left (a^{4} x^{4} - 2 \, a^{2} x^{2} + 1\right )} \operatorname {log\_integral}\left (\frac {a^{2} x^{2} - 2 \, a x + 1}{a^{2} x^{2} + 2 \, a x + 1}\right )\right )} \log \left (-\frac {a x + 1}{a x - 1}\right )}{4 \, {\left (a^{7} x^{4} - 2 \, a^{5} x^{2} + a^{3}\right )} \log \left (-\frac {a x + 1}{a x - 1}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-a^2*x^2+1)^3/arctanh(a*x)^2,x, algorithm="fricas")

[Out]

-1/4*(8*a^2*x^2 - ((a^4*x^4 - 2*a^2*x^2 + 1)*log_integral((a^2*x^2 + 2*a*x + 1)/(a^2*x^2 - 2*a*x + 1)) - (a^4*
x^4 - 2*a^2*x^2 + 1)*log_integral((a^2*x^2 - 2*a*x + 1)/(a^2*x^2 + 2*a*x + 1)))*log(-(a*x + 1)/(a*x - 1)))/((a
^7*x^4 - 2*a^5*x^2 + a^3)*log(-(a*x + 1)/(a*x - 1)))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int -\frac {x^{2}}{{\left (a^{2} x^{2} - 1\right )}^{3} \operatorname {artanh}\left (a x\right )^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-a^2*x^2+1)^3/arctanh(a*x)^2,x, algorithm="giac")

[Out]

integrate(-x^2/((a^2*x^2 - 1)^3*arctanh(a*x)^2), x)

________________________________________________________________________________________

maple [A]  time = 0.16, size = 38, normalized size = 0.93 \[ \frac {\frac {1}{8 \arctanh \left (a x \right )}-\frac {\cosh \left (4 \arctanh \left (a x \right )\right )}{8 \arctanh \left (a x \right )}+\frac {\Shi \left (4 \arctanh \left (a x \right )\right )}{2}}{a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(-a^2*x^2+1)^3/arctanh(a*x)^2,x)

[Out]

1/a^3*(1/8/arctanh(a*x)-1/8/arctanh(a*x)*cosh(4*arctanh(a*x))+1/2*Shi(4*arctanh(a*x)))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {2 \, x^{2}}{{\left (a^{5} x^{4} - 2 \, a^{3} x^{2} + a\right )} \log \left (a x + 1\right ) - {\left (a^{5} x^{4} - 2 \, a^{3} x^{2} + a\right )} \log \left (-a x + 1\right )} + \int -\frac {4 \, {\left (a^{2} x^{3} + x\right )}}{{\left (a^{7} x^{6} - 3 \, a^{5} x^{4} + 3 \, a^{3} x^{2} - a\right )} \log \left (a x + 1\right ) - {\left (a^{7} x^{6} - 3 \, a^{5} x^{4} + 3 \, a^{3} x^{2} - a\right )} \log \left (-a x + 1\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-a^2*x^2+1)^3/arctanh(a*x)^2,x, algorithm="maxima")

[Out]

-2*x^2/((a^5*x^4 - 2*a^3*x^2 + a)*log(a*x + 1) - (a^5*x^4 - 2*a^3*x^2 + a)*log(-a*x + 1)) + integrate(-4*(a^2*
x^3 + x)/((a^7*x^6 - 3*a^5*x^4 + 3*a^3*x^2 - a)*log(a*x + 1) - (a^7*x^6 - 3*a^5*x^4 + 3*a^3*x^2 - a)*log(-a*x
+ 1)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ -\int \frac {x^2}{{\mathrm {atanh}\left (a\,x\right )}^2\,{\left (a^2\,x^2-1\right )}^3} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-x^2/(atanh(a*x)^2*(a^2*x^2 - 1)^3),x)

[Out]

-int(x^2/(atanh(a*x)^2*(a^2*x^2 - 1)^3), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - \int \frac {x^{2}}{a^{6} x^{6} \operatorname {atanh}^{2}{\left (a x \right )} - 3 a^{4} x^{4} \operatorname {atanh}^{2}{\left (a x \right )} + 3 a^{2} x^{2} \operatorname {atanh}^{2}{\left (a x \right )} - \operatorname {atanh}^{2}{\left (a x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(-a**2*x**2+1)**3/atanh(a*x)**2,x)

[Out]

-Integral(x**2/(a**6*x**6*atanh(a*x)**2 - 3*a**4*x**4*atanh(a*x)**2 + 3*a**2*x**2*atanh(a*x)**2 - atanh(a*x)**
2), x)

________________________________________________________________________________________