3.54 \(\int \frac {a+b \tanh ^{-1}(c x)}{(d+c d x)^2} \, dx\)

Optimal. Leaf size=57 \[ -\frac {a+b \tanh ^{-1}(c x)}{c d^2 (c x+1)}-\frac {b}{2 c d^2 (c x+1)}+\frac {b \tanh ^{-1}(c x)}{2 c d^2} \]

[Out]

-1/2*b/c/d^2/(c*x+1)+1/2*b*arctanh(c*x)/c/d^2+(-a-b*arctanh(c*x))/c/d^2/(c*x+1)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 57, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.235, Rules used = {5926, 627, 44, 207} \[ -\frac {a+b \tanh ^{-1}(c x)}{c d^2 (c x+1)}-\frac {b}{2 c d^2 (c x+1)}+\frac {b \tanh ^{-1}(c x)}{2 c d^2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcTanh[c*x])/(d + c*d*x)^2,x]

[Out]

-b/(2*c*d^2*(1 + c*x)) + (b*ArcTanh[c*x])/(2*c*d^2) - (a + b*ArcTanh[c*x])/(c*d^2*(1 + c*x))

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 627

Int[((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m + p)*(a/d + (c*x)/e)^
p, x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] && (IntegerQ[p] || (GtQ[a, 0] && GtQ[d, 0] && I
ntegerQ[m + p]))

Rule 5926

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Simp[((d + e*x)^(q + 1)*(a + b
*ArcTanh[c*x]))/(e*(q + 1)), x] - Dist[(b*c)/(e*(q + 1)), Int[(d + e*x)^(q + 1)/(1 - c^2*x^2), x], x] /; FreeQ
[{a, b, c, d, e, q}, x] && NeQ[q, -1]

Rubi steps

\begin {align*} \int \frac {a+b \tanh ^{-1}(c x)}{(d+c d x)^2} \, dx &=-\frac {a+b \tanh ^{-1}(c x)}{c d^2 (1+c x)}+\frac {b \int \frac {1}{(d+c d x) \left (1-c^2 x^2\right )} \, dx}{d}\\ &=-\frac {a+b \tanh ^{-1}(c x)}{c d^2 (1+c x)}+\frac {b \int \frac {1}{\left (\frac {1}{d}-\frac {c x}{d}\right ) (d+c d x)^2} \, dx}{d}\\ &=-\frac {a+b \tanh ^{-1}(c x)}{c d^2 (1+c x)}+\frac {b \int \left (\frac {1}{2 d (1+c x)^2}-\frac {1}{2 d \left (-1+c^2 x^2\right )}\right ) \, dx}{d}\\ &=-\frac {b}{2 c d^2 (1+c x)}-\frac {a+b \tanh ^{-1}(c x)}{c d^2 (1+c x)}-\frac {b \int \frac {1}{-1+c^2 x^2} \, dx}{2 d^2}\\ &=-\frac {b}{2 c d^2 (1+c x)}+\frac {b \tanh ^{-1}(c x)}{2 c d^2}-\frac {a+b \tanh ^{-1}(c x)}{c d^2 (1+c x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 64, normalized size = 1.12 \[ \frac {-4 a-(b c x+b) \log (1-c x)+b \log (c x+1)+b c x \log (c x+1)-4 b \tanh ^{-1}(c x)-2 b}{4 c d^2 (c x+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcTanh[c*x])/(d + c*d*x)^2,x]

[Out]

(-4*a - 2*b - 4*b*ArcTanh[c*x] - (b + b*c*x)*Log[1 - c*x] + b*Log[1 + c*x] + b*c*x*Log[1 + c*x])/(4*c*d^2*(1 +
 c*x))

________________________________________________________________________________________

fricas [A]  time = 1.29, size = 49, normalized size = 0.86 \[ \frac {{\left (b c x - b\right )} \log \left (-\frac {c x + 1}{c x - 1}\right ) - 4 \, a - 2 \, b}{4 \, {\left (c^{2} d^{2} x + c d^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c*x))/(c*d*x+d)^2,x, algorithm="fricas")

[Out]

1/4*((b*c*x - b)*log(-(c*x + 1)/(c*x - 1)) - 4*a - 2*b)/(c^2*d^2*x + c*d^2)

________________________________________________________________________________________

giac [A]  time = 0.24, size = 63, normalized size = 1.11 \[ \frac {1}{4} \, c {\left (\frac {{\left (c x - 1\right )} b \log \left (-\frac {c x + 1}{c x - 1}\right )}{{\left (c x + 1\right )} c^{2} d^{2}} + \frac {{\left (c x - 1\right )} {\left (2 \, a + b\right )}}{{\left (c x + 1\right )} c^{2} d^{2}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c*x))/(c*d*x+d)^2,x, algorithm="giac")

[Out]

1/4*c*((c*x - 1)*b*log(-(c*x + 1)/(c*x - 1))/((c*x + 1)*c^2*d^2) + (c*x - 1)*(2*a + b)/((c*x + 1)*c^2*d^2))

________________________________________________________________________________________

maple [A]  time = 0.04, size = 84, normalized size = 1.47 \[ -\frac {a}{c \,d^{2} \left (c x +1\right )}-\frac {b \arctanh \left (c x \right )}{c \,d^{2} \left (c x +1\right )}-\frac {b \ln \left (c x -1\right )}{4 c \,d^{2}}-\frac {b}{2 c \,d^{2} \left (c x +1\right )}+\frac {b \ln \left (c x +1\right )}{4 c \,d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arctanh(c*x))/(c*d*x+d)^2,x)

[Out]

-1/c*a/d^2/(c*x+1)-1/c*b/d^2*arctanh(c*x)/(c*x+1)-1/4/c*b/d^2*ln(c*x-1)-1/2*b/c/d^2/(c*x+1)+1/4/c*b/d^2*ln(c*x
+1)

________________________________________________________________________________________

maxima [A]  time = 0.30, size = 96, normalized size = 1.68 \[ -\frac {1}{4} \, {\left (c {\left (\frac {2}{c^{3} d^{2} x + c^{2} d^{2}} - \frac {\log \left (c x + 1\right )}{c^{2} d^{2}} + \frac {\log \left (c x - 1\right )}{c^{2} d^{2}}\right )} + \frac {4 \, \operatorname {artanh}\left (c x\right )}{c^{2} d^{2} x + c d^{2}}\right )} b - \frac {a}{c^{2} d^{2} x + c d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c*x))/(c*d*x+d)^2,x, algorithm="maxima")

[Out]

-1/4*(c*(2/(c^3*d^2*x + c^2*d^2) - log(c*x + 1)/(c^2*d^2) + log(c*x - 1)/(c^2*d^2)) + 4*arctanh(c*x)/(c^2*d^2*
x + c*d^2))*b - a/(c^2*d^2*x + c*d^2)

________________________________________________________________________________________

mupad [B]  time = 1.07, size = 45, normalized size = 0.79 \[ -\frac {b\,\mathrm {atanh}\left (c\,x\right )-c\,\left (2\,a\,x+b\,x+b\,x\,\mathrm {atanh}\left (c\,x\right )\right )}{2\,x\,c^2\,d^2+2\,c\,d^2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*atanh(c*x))/(d + c*d*x)^2,x)

[Out]

-(b*atanh(c*x) - c*(2*a*x + b*x + b*x*atanh(c*x)))/(2*c*d^2 + 2*c^2*d^2*x)

________________________________________________________________________________________

sympy [A]  time = 1.39, size = 121, normalized size = 2.12 \[ \begin {cases} - \frac {2 a}{2 c^{2} d^{2} x + 2 c d^{2}} + \frac {b c x \operatorname {atanh}{\left (c x \right )}}{2 c^{2} d^{2} x + 2 c d^{2}} - \frac {b \operatorname {atanh}{\left (c x \right )}}{2 c^{2} d^{2} x + 2 c d^{2}} - \frac {b}{2 c^{2} d^{2} x + 2 c d^{2}} & \text {for}\: d \neq 0 \\\tilde {\infty } \left (a x + b x \operatorname {atanh}{\left (c x \right )} + \frac {b \log {\left (x - \frac {1}{c} \right )}}{c} + \frac {b \operatorname {atanh}{\left (c x \right )}}{c}\right ) & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*atanh(c*x))/(c*d*x+d)**2,x)

[Out]

Piecewise((-2*a/(2*c**2*d**2*x + 2*c*d**2) + b*c*x*atanh(c*x)/(2*c**2*d**2*x + 2*c*d**2) - b*atanh(c*x)/(2*c**
2*d**2*x + 2*c*d**2) - b/(2*c**2*d**2*x + 2*c*d**2), Ne(d, 0)), (zoo*(a*x + b*x*atanh(c*x) + b*log(x - 1/c)/c
+ b*atanh(c*x)/c), True))

________________________________________________________________________________________