3.22 \(\int \text {csch}^{-1}(\frac {1}{x}) \, dx\)

Optimal. Leaf size=16 \[ x \sinh ^{-1}(x)-\sqrt {x^2+1} \]

[Out]

x*arcsinh(x)-(x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 16, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.750, Rules used = {6328, 5653, 261} \[ x \sinh ^{-1}(x)-\sqrt {x^2+1} \]

Antiderivative was successfully verified.

[In]

Int[ArcCsch[x^(-1)],x]

[Out]

-Sqrt[1 + x^2] + x*ArcSinh[x]

Rule 261

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 5653

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcSinh[c*x])^n, x] - Dist[b*c*n, In
t[(x*(a + b*ArcSinh[c*x])^(n - 1))/Sqrt[1 + c^2*x^2], x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 6328

Int[ArcCsch[(c_.)/((a_.) + (b_.)*(x_)^(n_.))]^(m_.)*(u_.), x_Symbol] :> Int[u*ArcSinh[a/c + (b*x^n)/c]^m, x] /
; FreeQ[{a, b, c, n, m}, x]

Rubi steps

\begin {align*} \int \text {csch}^{-1}\left (\frac {1}{x}\right ) \, dx &=\int \sinh ^{-1}(x) \, dx\\ &=x \sinh ^{-1}(x)-\int \frac {x}{\sqrt {1+x^2}} \, dx\\ &=-\sqrt {1+x^2}+x \sinh ^{-1}(x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 18, normalized size = 1.12 \[ x \text {csch}^{-1}\left (\frac {1}{x}\right )-\sqrt {x^2+1} \]

Antiderivative was successfully verified.

[In]

Integrate[ArcCsch[x^(-1)],x]

[Out]

-Sqrt[1 + x^2] + x*ArcCsch[x^(-1)]

________________________________________________________________________________________

fricas [A]  time = 0.73, size = 22, normalized size = 1.38 \[ x \log \left (x + \sqrt {x^{2} + 1}\right ) - \sqrt {x^{2} + 1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccsch(1/x),x, algorithm="fricas")

[Out]

x*log(x + sqrt(x^2 + 1)) - sqrt(x^2 + 1)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \operatorname {arcsch}\left (\frac {1}{x}\right )\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccsch(1/x),x, algorithm="giac")

[Out]

integrate(arccsch(1/x), x)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 29, normalized size = 1.81 \[ x \,\mathrm {arccsch}\left (\frac {1}{x}\right )-\frac {x^{2} \left (1+\frac {1}{x^{2}}\right )}{\sqrt {\left (1+\frac {1}{x^{2}}\right ) x^{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arccsch(1/x),x)

[Out]

x*arccsch(1/x)-1/((1+1/x^2)*x^2)^(1/2)*x^2*(1+1/x^2)

________________________________________________________________________________________

maxima [A]  time = 0.31, size = 16, normalized size = 1.00 \[ x \operatorname {arcsch}\left (\frac {1}{x}\right ) - \sqrt {x^{2} + 1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccsch(1/x),x, algorithm="maxima")

[Out]

x*arccsch(1/x) - sqrt(x^2 + 1)

________________________________________________________________________________________

mupad [B]  time = 0.07, size = 14, normalized size = 0.88 \[ x\,\mathrm {asinh}\relax (x)-\sqrt {x^2+1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(asinh(x),x)

[Out]

x*asinh(x) - (x^2 + 1)^(1/2)

________________________________________________________________________________________

sympy [A]  time = 0.12, size = 14, normalized size = 0.88 \[ x \operatorname {acsch}{\left (\frac {1}{x} \right )} - \sqrt {x^{2} + 1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(acsch(1/x),x)

[Out]

x*acsch(1/x) - sqrt(x**2 + 1)

________________________________________________________________________________________