3.39 \(\int e^{\text {csch}^{-1}(a x^2)} x^3 \, dx\)

Optimal. Leaf size=52 \[ \frac {1}{4} x^4 \sqrt {\frac {1}{a^2 x^4}+1}+\frac {\tanh ^{-1}\left (\sqrt {\frac {1}{a^2 x^4}+1}\right )}{4 a^2}+\frac {x^2}{2 a} \]

[Out]

1/2*x^2/a+1/4*arctanh((1+1/a^2/x^4)^(1/2))/a^2+1/4*x^4*(1+1/a^2/x^4)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 52, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {6336, 30, 266, 47, 63, 208} \[ \frac {1}{4} x^4 \sqrt {\frac {1}{a^2 x^4}+1}+\frac {\tanh ^{-1}\left (\sqrt {\frac {1}{a^2 x^4}+1}\right )}{4 a^2}+\frac {x^2}{2 a} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcCsch[a*x^2]*x^3,x]

[Out]

x^2/(2*a) + (Sqrt[1 + 1/(a^2*x^4)]*x^4)/4 + ArcTanh[Sqrt[1 + 1/(a^2*x^4)]]/(4*a^2)

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 6336

Int[E^ArcCsch[(a_.)*(x_)^(p_.)]*(x_)^(m_.), x_Symbol] :> Dist[1/a, Int[x^(m - p), x], x] + Int[x^m*Sqrt[1 + 1/
(a^2*x^(2*p))], x] /; FreeQ[{a, m, p}, x]

Rubi steps

\begin {align*} \int e^{\text {csch}^{-1}\left (a x^2\right )} x^3 \, dx &=\frac {\int x \, dx}{a}+\int \sqrt {1+\frac {1}{a^2 x^4}} x^3 \, dx\\ &=\frac {x^2}{2 a}-\frac {1}{4} \operatorname {Subst}\left (\int \frac {\sqrt {1+\frac {x}{a^2}}}{x^2} \, dx,x,\frac {1}{x^4}\right )\\ &=\frac {x^2}{2 a}+\frac {1}{4} \sqrt {1+\frac {1}{a^2 x^4}} x^4-\frac {\operatorname {Subst}\left (\int \frac {1}{x \sqrt {1+\frac {x}{a^2}}} \, dx,x,\frac {1}{x^4}\right )}{8 a^2}\\ &=\frac {x^2}{2 a}+\frac {1}{4} \sqrt {1+\frac {1}{a^2 x^4}} x^4-\frac {1}{4} \operatorname {Subst}\left (\int \frac {1}{-a^2+a^2 x^2} \, dx,x,\sqrt {1+\frac {1}{a^2 x^4}}\right )\\ &=\frac {x^2}{2 a}+\frac {1}{4} \sqrt {1+\frac {1}{a^2 x^4}} x^4+\frac {\tanh ^{-1}\left (\sqrt {1+\frac {1}{a^2 x^4}}\right )}{4 a^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 53, normalized size = 1.02 \[ \frac {a x^2 \left (a x^2 \sqrt {\frac {1}{a^2 x^4}+1}+2\right )+\log \left (x^2 \left (\sqrt {\frac {1}{a^2 x^4}+1}+1\right )\right )}{4 a^2} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^ArcCsch[a*x^2]*x^3,x]

[Out]

(a*x^2*(2 + a*Sqrt[1 + 1/(a^2*x^4)]*x^2) + Log[(1 + Sqrt[1 + 1/(a^2*x^4)])*x^2])/(4*a^2)

________________________________________________________________________________________

fricas [A]  time = 0.65, size = 70, normalized size = 1.35 \[ \frac {a^{2} x^{4} \sqrt {\frac {a^{2} x^{4} + 1}{a^{2} x^{4}}} + 2 \, a x^{2} - \log \left (a x^{2} \sqrt {\frac {a^{2} x^{4} + 1}{a^{2} x^{4}}} - a x^{2}\right )}{4 \, a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1/a/x^2+(1+1/a^2/x^4)^(1/2))*x^3,x, algorithm="fricas")

[Out]

1/4*(a^2*x^4*sqrt((a^2*x^4 + 1)/(a^2*x^4)) + 2*a*x^2 - log(a*x^2*sqrt((a^2*x^4 + 1)/(a^2*x^4)) - a*x^2))/a^2

________________________________________________________________________________________

giac [A]  time = 0.15, size = 57, normalized size = 1.10 \[ \frac {2 \, a x^{2} + {\left (\sqrt {a^{2} x^{4} + 1} x^{2} - \frac {\log \left (-x^{2} {\left | a \right |} + \sqrt {a^{2} x^{4} + 1}\right )}{{\left | a \right |}}\right )} {\left | a \right |}}{4 \, a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1/a/x^2+(1+1/a^2/x^4)^(1/2))*x^3,x, algorithm="giac")

[Out]

1/4*(2*a*x^2 + (sqrt(a^2*x^4 + 1)*x^2 - log(-x^2*abs(a) + sqrt(a^2*x^4 + 1))/abs(a))*abs(a))/a^2

________________________________________________________________________________________

maple [B]  time = 0.17, size = 94, normalized size = 1.81 \[ \frac {\sqrt {\frac {a^{2} x^{4}+1}{a^{2} x^{4}}}\, x^{2} \left (x^{2} \sqrt {\frac {a^{2} x^{4}+1}{a^{2}}}\, a^{2}+\ln \left (x^{2}+\sqrt {\frac {a^{2} x^{4}+1}{a^{2}}}\right )\right )}{4 \sqrt {\frac {a^{2} x^{4}+1}{a^{2}}}\, a^{2}}+\frac {x^{2}}{2 a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/a/x^2+(1+1/a^2/x^4)^(1/2))*x^3,x)

[Out]

1/4*((a^2*x^4+1)/a^2/x^4)^(1/2)*x^2*(x^2*((a^2*x^4+1)/a^2)^(1/2)*a^2+ln(x^2+((a^2*x^4+1)/a^2)^(1/2)))/((a^2*x^
4+1)/a^2)^(1/2)/a^2+1/2*x^2/a

________________________________________________________________________________________

maxima [A]  time = 0.33, size = 81, normalized size = 1.56 \[ \frac {x^{2}}{2 \, a} + \frac {\sqrt {\frac {1}{a^{2} x^{4}} + 1}}{4 \, {\left (a^{2} {\left (\frac {1}{a^{2} x^{4}} + 1\right )} - a^{2}\right )}} + \frac {\log \left (\sqrt {\frac {1}{a^{2} x^{4}} + 1} + 1\right )}{8 \, a^{2}} - \frac {\log \left (\sqrt {\frac {1}{a^{2} x^{4}} + 1} - 1\right )}{8 \, a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1/a/x^2+(1+1/a^2/x^4)^(1/2))*x^3,x, algorithm="maxima")

[Out]

1/2*x^2/a + 1/4*sqrt(1/(a^2*x^4) + 1)/(a^2*(1/(a^2*x^4) + 1) - a^2) + 1/8*log(sqrt(1/(a^2*x^4) + 1) + 1)/a^2 -
 1/8*log(sqrt(1/(a^2*x^4) + 1) - 1)/a^2

________________________________________________________________________________________

mupad [B]  time = 2.61, size = 42, normalized size = 0.81 \[ \frac {\mathrm {atanh}\left (\sqrt {\frac {1}{a^2\,x^4}+1}\right )}{4\,a^2}+\frac {x^4\,\sqrt {\frac {1}{a^2\,x^4}+1}}{4}+\frac {x^2}{2\,a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*((1/(a^2*x^4) + 1)^(1/2) + 1/(a*x^2)),x)

[Out]

atanh((1/(a^2*x^4) + 1)^(1/2))/(4*a^2) + (x^4*(1/(a^2*x^4) + 1)^(1/2))/4 + x^2/(2*a)

________________________________________________________________________________________

sympy [A]  time = 3.68, size = 36, normalized size = 0.69 \[ \frac {x^{2} \sqrt {a^{2} x^{4} + 1}}{4 a} + \frac {x^{2}}{2 a} + \frac {\operatorname {asinh}{\left (a x^{2} \right )}}{4 a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1/a/x**2+(1+1/a**2/x**4)**(1/2))*x**3,x)

[Out]

x**2*sqrt(a**2*x**4 + 1)/(4*a) + x**2/(2*a) + asinh(a*x**2)/(4*a**2)

________________________________________________________________________________________