3.33 \(\int x^3 \text {Li}_3(a x^2) \, dx\)

Optimal. Leaf size=78 \[ \frac {\log \left (1-a x^2\right )}{16 a^2}-\frac {1}{8} x^4 \text {Li}_2\left (a x^2\right )+\frac {1}{4} x^4 \text {Li}_3\left (a x^2\right )+\frac {x^2}{16 a}-\frac {1}{16} x^4 \log \left (1-a x^2\right )+\frac {x^4}{32} \]

[Out]

1/16*x^2/a+1/32*x^4+1/16*ln(-a*x^2+1)/a^2-1/16*x^4*ln(-a*x^2+1)-1/8*x^4*polylog(2,a*x^2)+1/4*x^4*polylog(3,a*x
^2)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 78, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {6591, 2454, 2395, 43} \[ -\frac {1}{8} x^4 \text {PolyLog}\left (2,a x^2\right )+\frac {1}{4} x^4 \text {PolyLog}\left (3,a x^2\right )+\frac {\log \left (1-a x^2\right )}{16 a^2}+\frac {x^2}{16 a}-\frac {1}{16} x^4 \log \left (1-a x^2\right )+\frac {x^4}{32} \]

Antiderivative was successfully verified.

[In]

Int[x^3*PolyLog[3, a*x^2],x]

[Out]

x^2/(16*a) + x^4/32 + Log[1 - a*x^2]/(16*a^2) - (x^4*Log[1 - a*x^2])/16 - (x^4*PolyLog[2, a*x^2])/8 + (x^4*Pol
yLog[3, a*x^2])/4

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2395

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[((f + g
*x)^(q + 1)*(a + b*Log[c*(d + e*x)^n]))/(g*(q + 1)), x] - Dist[(b*e*n)/(g*(q + 1)), Int[(f + g*x)^(q + 1)/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*f - d*g, 0] && NeQ[q, -1]

Rule 2454

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[I
nt[x^(Simplify[(m + 1)/n] - 1)*(a + b*Log[c*(d + e*x)^p])^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p,
 q}, x] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0]) &&  !(EqQ[q, 1] && ILtQ[n, 0] &&
 IGtQ[m, 0])

Rule 6591

Int[((d_.)*(x_))^(m_.)*PolyLog[n_, (a_.)*((b_.)*(x_)^(p_.))^(q_.)], x_Symbol] :> Simp[((d*x)^(m + 1)*PolyLog[n
, a*(b*x^p)^q])/(d*(m + 1)), x] - Dist[(p*q)/(m + 1), Int[(d*x)^m*PolyLog[n - 1, a*(b*x^p)^q], x], x] /; FreeQ
[{a, b, d, m, p, q}, x] && NeQ[m, -1] && GtQ[n, 0]

Rubi steps

\begin {align*} \int x^3 \text {Li}_3\left (a x^2\right ) \, dx &=\frac {1}{4} x^4 \text {Li}_3\left (a x^2\right )-\frac {1}{2} \int x^3 \text {Li}_2\left (a x^2\right ) \, dx\\ &=-\frac {1}{8} x^4 \text {Li}_2\left (a x^2\right )+\frac {1}{4} x^4 \text {Li}_3\left (a x^2\right )-\frac {1}{4} \int x^3 \log \left (1-a x^2\right ) \, dx\\ &=-\frac {1}{8} x^4 \text {Li}_2\left (a x^2\right )+\frac {1}{4} x^4 \text {Li}_3\left (a x^2\right )-\frac {1}{8} \operatorname {Subst}\left (\int x \log (1-a x) \, dx,x,x^2\right )\\ &=-\frac {1}{16} x^4 \log \left (1-a x^2\right )-\frac {1}{8} x^4 \text {Li}_2\left (a x^2\right )+\frac {1}{4} x^4 \text {Li}_3\left (a x^2\right )-\frac {1}{16} a \operatorname {Subst}\left (\int \frac {x^2}{1-a x} \, dx,x,x^2\right )\\ &=-\frac {1}{16} x^4 \log \left (1-a x^2\right )-\frac {1}{8} x^4 \text {Li}_2\left (a x^2\right )+\frac {1}{4} x^4 \text {Li}_3\left (a x^2\right )-\frac {1}{16} a \operatorname {Subst}\left (\int \left (-\frac {1}{a^2}-\frac {x}{a}-\frac {1}{a^2 (-1+a x)}\right ) \, dx,x,x^2\right )\\ &=\frac {x^2}{16 a}+\frac {x^4}{32}+\frac {\log \left (1-a x^2\right )}{16 a^2}-\frac {1}{16} x^4 \log \left (1-a x^2\right )-\frac {1}{8} x^4 \text {Li}_2\left (a x^2\right )+\frac {1}{4} x^4 \text {Li}_3\left (a x^2\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 79, normalized size = 1.01 \[ \frac {-4 a^2 x^4 \text {Li}_2\left (a x^2\right )+8 a^2 x^4 \text {Li}_3\left (a x^2\right )+a^2 x^4-2 a^2 x^4 \log \left (1-a x^2\right )+2 a x^2+2 \log \left (1-a x^2\right )}{32 a^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3*PolyLog[3, a*x^2],x]

[Out]

(2*a*x^2 + a^2*x^4 + 2*Log[1 - a*x^2] - 2*a^2*x^4*Log[1 - a*x^2] - 4*a^2*x^4*PolyLog[2, a*x^2] + 8*a^2*x^4*Pol
yLog[3, a*x^2])/(32*a^2)

________________________________________________________________________________________

fricas [C]  time = 0.71, size = 69, normalized size = 0.88 \[ -\frac {4 \, a^{2} x^{4} {\rm Li}_2\left (a x^{2}\right ) - 8 \, a^{2} x^{4} {\rm polylog}\left (3, a x^{2}\right ) - a^{2} x^{4} - 2 \, a x^{2} + 2 \, {\left (a^{2} x^{4} - 1\right )} \log \left (-a x^{2} + 1\right )}{32 \, a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*polylog(3,a*x^2),x, algorithm="fricas")

[Out]

-1/32*(4*a^2*x^4*dilog(a*x^2) - 8*a^2*x^4*polylog(3, a*x^2) - a^2*x^4 - 2*a*x^2 + 2*(a^2*x^4 - 1)*log(-a*x^2 +
 1))/a^2

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x^{3} {\rm Li}_{3}(a x^{2})\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*polylog(3,a*x^2),x, algorithm="giac")

[Out]

integrate(x^3*polylog(3, a*x^2), x)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 72, normalized size = 0.92 \[ -\frac {-\frac {a \,x^{2} \left (3 a \,x^{2}+6\right )}{48}-\frac {\left (-3 a^{2} x^{4}+3\right ) \ln \left (-a \,x^{2}+1\right )}{24}+\frac {a^{2} x^{4} \polylog \left (2, a \,x^{2}\right )}{4}-\frac {a^{2} x^{4} \polylog \left (3, a \,x^{2}\right )}{2}}{2 a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*polylog(3,a*x^2),x)

[Out]

-1/2/a^2*(-1/48*a*x^2*(3*a*x^2+6)-1/24*(-3*a^2*x^4+3)*ln(-a*x^2+1)+1/4*a^2*x^4*polylog(2,a*x^2)-1/2*a^2*x^4*po
lylog(3,a*x^2))

________________________________________________________________________________________

maxima [A]  time = 0.32, size = 69, normalized size = 0.88 \[ -\frac {4 \, a^{2} x^{4} {\rm Li}_2\left (a x^{2}\right ) - 8 \, a^{2} x^{4} {\rm Li}_{3}(a x^{2}) - a^{2} x^{4} - 2 \, a x^{2} + 2 \, {\left (a^{2} x^{4} - 1\right )} \log \left (-a x^{2} + 1\right )}{32 \, a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*polylog(3,a*x^2),x, algorithm="maxima")

[Out]

-1/32*(4*a^2*x^4*dilog(a*x^2) - 8*a^2*x^4*polylog(3, a*x^2) - a^2*x^4 - 2*a*x^2 + 2*(a^2*x^4 - 1)*log(-a*x^2 +
 1))/a^2

________________________________________________________________________________________

mupad [B]  time = 0.30, size = 65, normalized size = 0.83 \[ \frac {x^4\,\mathrm {polylog}\left (3,a\,x^2\right )}{4}-\frac {x^4\,\mathrm {polylog}\left (2,a\,x^2\right )}{8}+\frac {\ln \left (a\,x^2-1\right )}{16\,a^2}-\frac {x^4\,\ln \left (1-a\,x^2\right )}{16}+\frac {x^4}{32}+\frac {x^2}{16\,a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*polylog(3, a*x^2),x)

[Out]

(x^4*polylog(3, a*x^2))/4 - (x^4*polylog(2, a*x^2))/8 + log(a*x^2 - 1)/(16*a^2) - (x^4*log(1 - a*x^2))/16 + x^
4/32 + x^2/(16*a)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x^{3} \operatorname {Li}_{3}\left (a x^{2}\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*polylog(3,a*x**2),x)

[Out]

Integral(x**3*polylog(3, a*x**2), x)

________________________________________________________________________________________