3.13.68 \(\int \frac {x (-b+x) (a b-2 a x+x^2)}{\sqrt {x (-a+x) (-b+x)} (-a^2 d+2 a d x+(b^2-d) x^2-2 b x^3+x^4)} \, dx\)

Optimal. Leaf size=92 \[ -\frac {\tan ^{-1}\left (\frac {\sqrt {x^2 (-a-b)+a b x+x^3}}{\sqrt [4]{d} (a-x)}\right )}{\sqrt [4]{d}}-\frac {\tanh ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {x^2 (-a-b)+a b x+x^3}}{x (x-b)}\right )}{\sqrt [4]{d}} \]

________________________________________________________________________________________

Rubi [F]  time = 19.12, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x (-b+x) \left (a b-2 a x+x^2\right )}{\sqrt {x (-a+x) (-b+x)} \left (-a^2 d+2 a d x+\left (b^2-d\right ) x^2-2 b x^3+x^4\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(x*(-b + x)*(a*b - 2*a*x + x^2))/(Sqrt[x*(-a + x)*(-b + x)]*(-(a^2*d) + 2*a*d*x + (b^2 - d)*x^2 - 2*b*x^3
+ x^4)),x]

[Out]

(4*a*Sqrt[x]*Sqrt[-a + x]*Sqrt[-b + x]*Defer[Subst][Defer[Int][(x^4*Sqrt[-b + x^2])/(Sqrt[-a + x^2]*(a^2*d - 2
*a*d*x^2 - b^2*(1 - d/b^2)*x^4 + 2*b*x^6 - x^8)), x], x, Sqrt[x]])/Sqrt[(a - x)*(b - x)*x] + (2*a*b*Sqrt[x]*Sq
rt[-a + x]*Sqrt[-b + x]*Defer[Subst][Defer[Int][(x^2*Sqrt[-b + x^2])/(Sqrt[-a + x^2]*(-(a^2*d) + 2*a*d*x^2 + b
^2*(1 - d/b^2)*x^4 - 2*b*x^6 + x^8)), x], x, Sqrt[x]])/Sqrt[(a - x)*(b - x)*x] + (2*Sqrt[x]*Sqrt[-a + x]*Sqrt[
-b + x]*Defer[Subst][Defer[Int][(x^6*Sqrt[-b + x^2])/(Sqrt[-a + x^2]*(-(a^2*d) + 2*a*d*x^2 + b^2*(1 - d/b^2)*x
^4 - 2*b*x^6 + x^8)), x], x, Sqrt[x]])/Sqrt[(a - x)*(b - x)*x]

Rubi steps

\begin {align*} \int \frac {x (-b+x) \left (a b-2 a x+x^2\right )}{\sqrt {x (-a+x) (-b+x)} \left (-a^2 d+2 a d x+\left (b^2-d\right ) x^2-2 b x^3+x^4\right )} \, dx &=\frac {\left (\sqrt {x} \sqrt {-a+x} \sqrt {-b+x}\right ) \int \frac {\sqrt {x} \sqrt {-b+x} \left (a b-2 a x+x^2\right )}{\sqrt {-a+x} \left (-a^2 d+2 a d x+\left (b^2-d\right ) x^2-2 b x^3+x^4\right )} \, dx}{\sqrt {x (-a+x) (-b+x)}}\\ &=\frac {\left (2 \sqrt {x} \sqrt {-a+x} \sqrt {-b+x}\right ) \operatorname {Subst}\left (\int \frac {x^2 \sqrt {-b+x^2} \left (a b-2 a x^2+x^4\right )}{\sqrt {-a+x^2} \left (-a^2 d+2 a d x^2+\left (b^2-d\right ) x^4-2 b x^6+x^8\right )} \, dx,x,\sqrt {x}\right )}{\sqrt {x (-a+x) (-b+x)}}\\ &=\frac {\left (2 \sqrt {x} \sqrt {-a+x} \sqrt {-b+x}\right ) \operatorname {Subst}\left (\int \left (\frac {2 a x^4 \sqrt {-b+x^2}}{\sqrt {-a+x^2} \left (a^2 d-2 a d x^2-b^2 \left (1-\frac {d}{b^2}\right ) x^4+2 b x^6-x^8\right )}+\frac {a b x^2 \sqrt {-b+x^2}}{\sqrt {-a+x^2} \left (-a^2 d+2 a d x^2+b^2 \left (1-\frac {d}{b^2}\right ) x^4-2 b x^6+x^8\right )}+\frac {x^6 \sqrt {-b+x^2}}{\sqrt {-a+x^2} \left (-a^2 d+2 a d x^2+b^2 \left (1-\frac {d}{b^2}\right ) x^4-2 b x^6+x^8\right )}\right ) \, dx,x,\sqrt {x}\right )}{\sqrt {x (-a+x) (-b+x)}}\\ &=\frac {\left (2 \sqrt {x} \sqrt {-a+x} \sqrt {-b+x}\right ) \operatorname {Subst}\left (\int \frac {x^6 \sqrt {-b+x^2}}{\sqrt {-a+x^2} \left (-a^2 d+2 a d x^2+b^2 \left (1-\frac {d}{b^2}\right ) x^4-2 b x^6+x^8\right )} \, dx,x,\sqrt {x}\right )}{\sqrt {x (-a+x) (-b+x)}}+\frac {\left (4 a \sqrt {x} \sqrt {-a+x} \sqrt {-b+x}\right ) \operatorname {Subst}\left (\int \frac {x^4 \sqrt {-b+x^2}}{\sqrt {-a+x^2} \left (a^2 d-2 a d x^2-b^2 \left (1-\frac {d}{b^2}\right ) x^4+2 b x^6-x^8\right )} \, dx,x,\sqrt {x}\right )}{\sqrt {x (-a+x) (-b+x)}}+\frac {\left (2 a b \sqrt {x} \sqrt {-a+x} \sqrt {-b+x}\right ) \operatorname {Subst}\left (\int \frac {x^2 \sqrt {-b+x^2}}{\sqrt {-a+x^2} \left (-a^2 d+2 a d x^2+b^2 \left (1-\frac {d}{b^2}\right ) x^4-2 b x^6+x^8\right )} \, dx,x,\sqrt {x}\right )}{\sqrt {x (-a+x) (-b+x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 14.41, size = 28005, normalized size = 304.40 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(x*(-b + x)*(a*b - 2*a*x + x^2))/(Sqrt[x*(-a + x)*(-b + x)]*(-(a^2*d) + 2*a*d*x + (b^2 - d)*x^2 - 2*
b*x^3 + x^4)),x]

[Out]

Result too large to show

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 1.04, size = 92, normalized size = 1.00 \begin {gather*} -\frac {\tan ^{-1}\left (\frac {\sqrt {a b x+(-a-b) x^2+x^3}}{\sqrt [4]{d} (a-x)}\right )}{\sqrt [4]{d}}-\frac {\tanh ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {a b x+(-a-b) x^2+x^3}}{x (-b+x)}\right )}{\sqrt [4]{d}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(x*(-b + x)*(a*b - 2*a*x + x^2))/(Sqrt[x*(-a + x)*(-b + x)]*(-(a^2*d) + 2*a*d*x + (b^2 - d)
*x^2 - 2*b*x^3 + x^4)),x]

[Out]

-(ArcTan[Sqrt[a*b*x + (-a - b)*x^2 + x^3]/(d^(1/4)*(a - x))]/d^(1/4)) - ArcTanh[(d^(1/4)*Sqrt[a*b*x + (-a - b)
*x^2 + x^3])/(x*(-b + x))]/d^(1/4)

________________________________________________________________________________________

fricas [B]  time = 0.99, size = 339, normalized size = 3.68 \begin {gather*} -\frac {\arctan \left (-\frac {\sqrt {a b x - {\left (a + b\right )} x^{2} + x^{3}} d^{\frac {1}{4}}}{b x - x^{2}}\right )}{d^{\frac {1}{4}}} - \frac {\log \left (\frac {2 \, b x^{3} - x^{4} - a^{2} d + 2 \, a d x - {\left (b^{2} + d\right )} x^{2} + 2 \, \sqrt {a b x - {\left (a + b\right )} x^{2} + x^{3}} {\left (\frac {a d - d x}{d^{\frac {1}{4}}} + \frac {b d x - d x^{2}}{d^{\frac {3}{4}}}\right )} - \frac {2 \, {\left (a b d x - {\left (a + b\right )} d x^{2} + d x^{3}\right )}}{\sqrt {d}}}{2 \, b x^{3} - x^{4} + a^{2} d - 2 \, a d x - {\left (b^{2} - d\right )} x^{2}}\right )}{4 \, d^{\frac {1}{4}}} + \frac {\log \left (\frac {2 \, b x^{3} - x^{4} - a^{2} d + 2 \, a d x - {\left (b^{2} + d\right )} x^{2} - 2 \, \sqrt {a b x - {\left (a + b\right )} x^{2} + x^{3}} {\left (\frac {a d - d x}{d^{\frac {1}{4}}} + \frac {b d x - d x^{2}}{d^{\frac {3}{4}}}\right )} - \frac {2 \, {\left (a b d x - {\left (a + b\right )} d x^{2} + d x^{3}\right )}}{\sqrt {d}}}{2 \, b x^{3} - x^{4} + a^{2} d - 2 \, a d x - {\left (b^{2} - d\right )} x^{2}}\right )}{4 \, d^{\frac {1}{4}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-b+x)*(a*b-2*a*x+x^2)/(x*(-a+x)*(-b+x))^(1/2)/(-a^2*d+2*a*d*x+(b^2-d)*x^2-2*b*x^3+x^4),x, algorit
hm="fricas")

[Out]

-arctan(-sqrt(a*b*x - (a + b)*x^2 + x^3)*d^(1/4)/(b*x - x^2))/d^(1/4) - 1/4*log((2*b*x^3 - x^4 - a^2*d + 2*a*d
*x - (b^2 + d)*x^2 + 2*sqrt(a*b*x - (a + b)*x^2 + x^3)*((a*d - d*x)/d^(1/4) + (b*d*x - d*x^2)/d^(3/4)) - 2*(a*
b*d*x - (a + b)*d*x^2 + d*x^3)/sqrt(d))/(2*b*x^3 - x^4 + a^2*d - 2*a*d*x - (b^2 - d)*x^2))/d^(1/4) + 1/4*log((
2*b*x^3 - x^4 - a^2*d + 2*a*d*x - (b^2 + d)*x^2 - 2*sqrt(a*b*x - (a + b)*x^2 + x^3)*((a*d - d*x)/d^(1/4) + (b*
d*x - d*x^2)/d^(3/4)) - 2*(a*b*d*x - (a + b)*d*x^2 + d*x^3)/sqrt(d))/(2*b*x^3 - x^4 + a^2*d - 2*a*d*x - (b^2 -
 d)*x^2))/d^(1/4)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (a b - 2 \, a x + x^{2}\right )} {\left (b - x\right )} x}{{\left (2 \, b x^{3} - x^{4} + a^{2} d - 2 \, a d x - {\left (b^{2} - d\right )} x^{2}\right )} \sqrt {{\left (a - x\right )} {\left (b - x\right )} x}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-b+x)*(a*b-2*a*x+x^2)/(x*(-a+x)*(-b+x))^(1/2)/(-a^2*d+2*a*d*x+(b^2-d)*x^2-2*b*x^3+x^4),x, algorit
hm="giac")

[Out]

integrate((a*b - 2*a*x + x^2)*(b - x)*x/((2*b*x^3 - x^4 + a^2*d - 2*a*d*x - (b^2 - d)*x^2)*sqrt((a - x)*(b - x
)*x)), x)

________________________________________________________________________________________

maple [C]  time = 0.12, size = 357, normalized size = 3.88

method result size
default \(-\frac {2 b \sqrt {-\frac {-b +x}{b}}\, \sqrt {\frac {-a +x}{-a +b}}\, \sqrt {\frac {x}{b}}\, \EllipticF \left (\sqrt {-\frac {-b +x}{b}}, \sqrt {\frac {b}{-a +b}}\right )}{\sqrt {a b x -a \,x^{2}-b \,x^{2}+x^{3}}}-\frac {b \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (\textit {\_Z}^{4}-2 b \,\textit {\_Z}^{3}+\left (b^{2}-d \right ) \textit {\_Z}^{2}+2 a d \textit {\_Z} -a^{2} d \right )}{\sum }\frac {\left (-2 \underline {\hspace {1.25 ex}}\alpha ^{3} a +\underline {\hspace {1.25 ex}}\alpha ^{3} b +3 \underline {\hspace {1.25 ex}}\alpha ^{2} a b -\underline {\hspace {1.25 ex}}\alpha ^{2} b^{2}-\underline {\hspace {1.25 ex}}\alpha a \,b^{2}+\underline {\hspace {1.25 ex}}\alpha ^{2} d -2 \underline {\hspace {1.25 ex}}\alpha a d +a^{2} d \right ) \left (\underline {\hspace {1.25 ex}}\alpha ^{3}-b \,\underline {\hspace {1.25 ex}}\alpha ^{2}-\underline {\hspace {1.25 ex}}\alpha d +2 a d -b d \right ) \sqrt {-\frac {-b +x}{b}}\, \sqrt {\frac {-a +x}{-a +b}}\, \sqrt {\frac {x}{b}}\, \EllipticPi \left (\sqrt {-\frac {-b +x}{b}}, -\frac {\left (\underline {\hspace {1.25 ex}}\alpha ^{3}-b \,\underline {\hspace {1.25 ex}}\alpha ^{2}-\underline {\hspace {1.25 ex}}\alpha d +2 a d -b d \right ) b}{d \left (a^{2}-2 a b +b^{2}\right )}, \sqrt {\frac {b}{-a +b}}\right )}{\left (-2 \underline {\hspace {1.25 ex}}\alpha ^{3}+3 b \,\underline {\hspace {1.25 ex}}\alpha ^{2}-\underline {\hspace {1.25 ex}}\alpha \,b^{2}+\underline {\hspace {1.25 ex}}\alpha d -a d \right ) \left (a^{2}-2 a b +b^{2}\right ) \sqrt {x \left (a b -a x -b x +x^{2}\right )}}\right )}{d}\) \(357\)
elliptic \(-\frac {2 b \sqrt {-\frac {-b +x}{b}}\, \sqrt {\frac {-a +x}{-a +b}}\, \sqrt {\frac {x}{b}}\, \EllipticF \left (\sqrt {-\frac {-b +x}{b}}, \sqrt {\frac {b}{-a +b}}\right )}{\sqrt {a b x -a \,x^{2}-b \,x^{2}+x^{3}}}+\frac {b \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (\textit {\_Z}^{4}-2 b \,\textit {\_Z}^{3}+\left (b^{2}-d \right ) \textit {\_Z}^{2}+2 a d \textit {\_Z} -a^{2} d \right )}{\sum }\frac {\left (2 \underline {\hspace {1.25 ex}}\alpha ^{3} a -\underline {\hspace {1.25 ex}}\alpha ^{3} b -3 \underline {\hspace {1.25 ex}}\alpha ^{2} a b +\underline {\hspace {1.25 ex}}\alpha ^{2} b^{2}+\underline {\hspace {1.25 ex}}\alpha a \,b^{2}-\underline {\hspace {1.25 ex}}\alpha ^{2} d +2 \underline {\hspace {1.25 ex}}\alpha a d -a^{2} d \right ) \left (\underline {\hspace {1.25 ex}}\alpha ^{3}-b \,\underline {\hspace {1.25 ex}}\alpha ^{2}-\underline {\hspace {1.25 ex}}\alpha d +2 a d -b d \right ) \sqrt {-\frac {-b +x}{b}}\, \sqrt {\frac {-a +x}{-a +b}}\, \sqrt {\frac {x}{b}}\, \EllipticPi \left (\sqrt {-\frac {-b +x}{b}}, -\frac {\left (\underline {\hspace {1.25 ex}}\alpha ^{3}-b \,\underline {\hspace {1.25 ex}}\alpha ^{2}-\underline {\hspace {1.25 ex}}\alpha d +2 a d -b d \right ) b}{d \left (a^{2}-2 a b +b^{2}\right )}, \sqrt {\frac {b}{-a +b}}\right )}{\left (-2 \underline {\hspace {1.25 ex}}\alpha ^{3}+3 b \,\underline {\hspace {1.25 ex}}\alpha ^{2}-\underline {\hspace {1.25 ex}}\alpha \,b^{2}+\underline {\hspace {1.25 ex}}\alpha d -a d \right ) \left (a^{2}-2 a b +b^{2}\right ) \sqrt {x \left (a b -a x -b x +x^{2}\right )}}\right )}{d}\) \(357\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(-b+x)*(a*b-2*a*x+x^2)/(x*(-a+x)*(-b+x))^(1/2)/(-a^2*d+2*a*d*x+(b^2-d)*x^2-2*b*x^3+x^4),x,method=_RETURN
VERBOSE)

[Out]

-2*b*(-(-b+x)/b)^(1/2)*((-a+x)/(-a+b))^(1/2)*(x/b)^(1/2)/(a*b*x-a*x^2-b*x^2+x^3)^(1/2)*EllipticF((-(-b+x)/b)^(
1/2),(b/(-a+b))^(1/2))-b/d*sum((-2*_alpha^3*a+_alpha^3*b+3*_alpha^2*a*b-_alpha^2*b^2-_alpha*a*b^2+_alpha^2*d-2
*_alpha*a*d+a^2*d)/(-2*_alpha^3+3*_alpha^2*b-_alpha*b^2+_alpha*d-a*d)*(_alpha^3-_alpha^2*b-_alpha*d+2*a*d-b*d)
/(a^2-2*a*b+b^2)*(-(-b+x)/b)^(1/2)*((-a+x)/(-a+b))^(1/2)*(x/b)^(1/2)/(x*(a*b-a*x-b*x+x^2))^(1/2)*EllipticPi((-
(-b+x)/b)^(1/2),-(_alpha^3-_alpha^2*b-_alpha*d+2*a*d-b*d)*b/d/(a^2-2*a*b+b^2),(b/(-a+b))^(1/2)),_alpha=RootOf(
_Z^4-2*b*_Z^3+(b^2-d)*_Z^2+2*a*d*_Z-a^2*d))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (a b - 2 \, a x + x^{2}\right )} {\left (b - x\right )} x}{{\left (2 \, b x^{3} - x^{4} + a^{2} d - 2 \, a d x - {\left (b^{2} - d\right )} x^{2}\right )} \sqrt {{\left (a - x\right )} {\left (b - x\right )} x}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-b+x)*(a*b-2*a*x+x^2)/(x*(-a+x)*(-b+x))^(1/2)/(-a^2*d+2*a*d*x+(b^2-d)*x^2-2*b*x^3+x^4),x, algorit
hm="maxima")

[Out]

integrate((a*b - 2*a*x + x^2)*(b - x)*x/((2*b*x^3 - x^4 + a^2*d - 2*a*d*x - (b^2 - d)*x^2)*sqrt((a - x)*(b - x
)*x)), x)

________________________________________________________________________________________

mupad [B]  time = 1.38, size = 705, normalized size = 7.66 \begin {gather*} \left (\sum _{k=1}^4\left (-\frac {2\,b\,\sqrt {\frac {x}{b}}\,\sqrt {\frac {b-x}{b}}\,\sqrt {\frac {a-x}{a-b}}\,\Pi \left (-\frac {b}{\mathrm {root}\left (z^4-2\,b\,z^3-z^2\,\left (d-b^2\right )+2\,a\,d\,z-a^2\,d,z,k\right )-b};\mathrm {asin}\left (\sqrt {\frac {b-x}{b}}\right )\middle |-\frac {b}{a-b}\right )\,\left (-d\,a^2+a\,b^2\,\mathrm {root}\left (z^4-2\,b\,z^3-z^2\,\left (d-b^2\right )+2\,a\,d\,z-a^2\,d,z,k\right )-3\,a\,b\,{\mathrm {root}\left (z^4-2\,b\,z^3-z^2\,\left (d-b^2\right )+2\,a\,d\,z-a^2\,d,z,k\right )}^2+2\,a\,{\mathrm {root}\left (z^4-2\,b\,z^3-z^2\,\left (d-b^2\right )+2\,a\,d\,z-a^2\,d,z,k\right )}^3+2\,d\,a\,\mathrm {root}\left (z^4-2\,b\,z^3-z^2\,\left (d-b^2\right )+2\,a\,d\,z-a^2\,d,z,k\right )+b^2\,{\mathrm {root}\left (z^4-2\,b\,z^3-z^2\,\left (d-b^2\right )+2\,a\,d\,z-a^2\,d,z,k\right )}^2-b\,{\mathrm {root}\left (z^4-2\,b\,z^3-z^2\,\left (d-b^2\right )+2\,a\,d\,z-a^2\,d,z,k\right )}^3-d\,{\mathrm {root}\left (z^4-2\,b\,z^3-z^2\,\left (d-b^2\right )+2\,a\,d\,z-a^2\,d,z,k\right )}^2\right )}{\left (\mathrm {root}\left (z^4-2\,b\,z^3-z^2\,\left (d-b^2\right )+2\,a\,d\,z-a^2\,d,z,k\right )-b\right )\,\sqrt {x\,\left (a-x\right )\,\left (b-x\right )}\,\left (2\,b^2\,\mathrm {root}\left (z^4-2\,b\,z^3-z^2\,\left (d-b^2\right )+2\,a\,d\,z-a^2\,d,z,k\right )-6\,b\,{\mathrm {root}\left (z^4-2\,b\,z^3-z^2\,\left (d-b^2\right )+2\,a\,d\,z-a^2\,d,z,k\right )}^2+4\,{\mathrm {root}\left (z^4-2\,b\,z^3-z^2\,\left (d-b^2\right )+2\,a\,d\,z-a^2\,d,z,k\right )}^3-2\,d\,\mathrm {root}\left (z^4-2\,b\,z^3-z^2\,\left (d-b^2\right )+2\,a\,d\,z-a^2\,d,z,k\right )+2\,a\,d\right )}\right )\right )-\frac {2\,b\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {\frac {b-x}{b}}\right )\middle |-\frac {b}{a-b}\right )\,\sqrt {\frac {x}{b}}\,\sqrt {\frac {b-x}{b}}\,\sqrt {\frac {a-x}{a-b}}}{\sqrt {x^3+\left (-a-b\right )\,x^2+a\,b\,x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(b - x)*(a*b - 2*a*x + x^2))/((x*(a - x)*(b - x))^(1/2)*(x^2*(d - b^2) + a^2*d + 2*b*x^3 - x^4 - 2*a*d*
x)),x)

[Out]

symsum(-(2*b*(x/b)^(1/2)*((b - x)/b)^(1/2)*((a - x)/(a - b))^(1/2)*ellipticPi(-b/(root(z^4 - 2*b*z^3 - z^2*(d
- b^2) + 2*a*d*z - a^2*d, z, k) - b), asin(((b - x)/b)^(1/2)), -b/(a - b))*(2*a*root(z^4 - 2*b*z^3 - z^2*(d -
b^2) + 2*a*d*z - a^2*d, z, k)^3 - b*root(z^4 - 2*b*z^3 - z^2*(d - b^2) + 2*a*d*z - a^2*d, z, k)^3 - d*root(z^4
 - 2*b*z^3 - z^2*(d - b^2) + 2*a*d*z - a^2*d, z, k)^2 - a^2*d + b^2*root(z^4 - 2*b*z^3 - z^2*(d - b^2) + 2*a*d
*z - a^2*d, z, k)^2 + 2*a*d*root(z^4 - 2*b*z^3 - z^2*(d - b^2) + 2*a*d*z - a^2*d, z, k) - 3*a*b*root(z^4 - 2*b
*z^3 - z^2*(d - b^2) + 2*a*d*z - a^2*d, z, k)^2 + a*b^2*root(z^4 - 2*b*z^3 - z^2*(d - b^2) + 2*a*d*z - a^2*d,
z, k)))/((root(z^4 - 2*b*z^3 - z^2*(d - b^2) + 2*a*d*z - a^2*d, z, k) - b)*(x*(a - x)*(b - x))^(1/2)*(2*a*d -
2*d*root(z^4 - 2*b*z^3 - z^2*(d - b^2) + 2*a*d*z - a^2*d, z, k) - 6*b*root(z^4 - 2*b*z^3 - z^2*(d - b^2) + 2*a
*d*z - a^2*d, z, k)^2 + 2*b^2*root(z^4 - 2*b*z^3 - z^2*(d - b^2) + 2*a*d*z - a^2*d, z, k) + 4*root(z^4 - 2*b*z
^3 - z^2*(d - b^2) + 2*a*d*z - a^2*d, z, k)^3)), k, 1, 4) - (2*b*ellipticF(asin(((b - x)/b)^(1/2)), -b/(a - b)
)*(x/b)^(1/2)*((b - x)/b)^(1/2)*((a - x)/(a - b))^(1/2))/(x^3 - x^2*(a + b) + a*b*x)^(1/2)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-b+x)*(a*b-2*a*x+x**2)/(x*(-a+x)*(-b+x))**(1/2)/(-a**2*d+2*a*d*x+(b**2-d)*x**2-2*b*x**3+x**4),x)

[Out]

Timed out

________________________________________________________________________________________