3.15.29 \(\int \frac {\sqrt [4]{1+x^4} (2+x^4)}{x^2 (-1+2 x^4+x^8)} \, dx\)

Optimal. Leaf size=101 \[ \frac {2 \sqrt [4]{x^4+1}}{x}-\frac {1}{8} \text {RootSum}\left [\text {$\#$1}^8-4 \text {$\#$1}^4+2\& ,\frac {-7 \text {$\#$1}^4 \log \left (\sqrt [4]{x^4+1}-\text {$\#$1} x\right )+7 \text {$\#$1}^4 \log (x)+4 \log \left (\sqrt [4]{x^4+1}-\text {$\#$1} x\right )-4 \log (x)}{\text {$\#$1}^7-2 \text {$\#$1}^3}\& \right ] \]

________________________________________________________________________________________

Rubi [B]  time = 1.49, antiderivative size = 425, normalized size of antiderivative = 4.21, number of steps used = 40, number of rules used = 10, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6728, 277, 331, 298, 203, 206, 1528, 510, 1518, 494} \begin {gather*} -\frac {5}{12} \left (2-\sqrt {2}\right ) x^3 F_1\left (\frac {3}{4};-\frac {1}{4},1;\frac {7}{4};-x^4,\left (1-\sqrt {2}\right ) x^4\right )-\frac {5}{12} \left (2+\sqrt {2}\right ) x^3 F_1\left (\frac {3}{4};1,-\frac {1}{4};\frac {7}{4};\left (1+\sqrt {2}\right ) x^4,-x^4\right )+\frac {2 \sqrt [4]{x^4+1}}{x}+\frac {1}{4} \sqrt [4]{10+7 \sqrt {2}} \tan ^{-1}\left (\frac {\sqrt [4]{2-\sqrt {2}} x}{\sqrt [4]{x^4+1}}\right )+\frac {1}{4} \sqrt [4]{2-\sqrt {2}} \tan ^{-1}\left (\frac {\sqrt [4]{2-\sqrt {2}} x}{\sqrt [4]{x^4+1}}\right )+\frac {1}{4} \sqrt [4]{2+\sqrt {2}} \tan ^{-1}\left (\frac {\sqrt [4]{2+\sqrt {2}} x}{\sqrt [4]{x^4+1}}\right )-\frac {1}{4} \sqrt [4]{10-7 \sqrt {2}} \tan ^{-1}\left (\frac {\sqrt [4]{2+\sqrt {2}} x}{\sqrt [4]{x^4+1}}\right )-\frac {1}{4} \sqrt [4]{10+7 \sqrt {2}} \tanh ^{-1}\left (\frac {\sqrt [4]{2-\sqrt {2}} x}{\sqrt [4]{x^4+1}}\right )-\frac {1}{4} \sqrt [4]{2-\sqrt {2}} \tanh ^{-1}\left (\frac {\sqrt [4]{2-\sqrt {2}} x}{\sqrt [4]{x^4+1}}\right )-\frac {1}{4} \sqrt [4]{2+\sqrt {2}} \tanh ^{-1}\left (\frac {\sqrt [4]{2+\sqrt {2}} x}{\sqrt [4]{x^4+1}}\right )+\frac {1}{4} \sqrt [4]{10-7 \sqrt {2}} \tanh ^{-1}\left (\frac {\sqrt [4]{2+\sqrt {2}} x}{\sqrt [4]{x^4+1}}\right ) \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Int[((1 + x^4)^(1/4)*(2 + x^4))/(x^2*(-1 + 2*x^4 + x^8)),x]

[Out]

(2*(1 + x^4)^(1/4))/x - (5*(2 - Sqrt[2])*x^3*AppellF1[3/4, -1/4, 1, 7/4, -x^4, (1 - Sqrt[2])*x^4])/12 - (5*(2
+ Sqrt[2])*x^3*AppellF1[3/4, 1, -1/4, 7/4, (1 + Sqrt[2])*x^4, -x^4])/12 + ((2 - Sqrt[2])^(1/4)*ArcTan[((2 - Sq
rt[2])^(1/4)*x)/(1 + x^4)^(1/4)])/4 + ((10 + 7*Sqrt[2])^(1/4)*ArcTan[((2 - Sqrt[2])^(1/4)*x)/(1 + x^4)^(1/4)])
/4 - ((10 - 7*Sqrt[2])^(1/4)*ArcTan[((2 + Sqrt[2])^(1/4)*x)/(1 + x^4)^(1/4)])/4 + ((2 + Sqrt[2])^(1/4)*ArcTan[
((2 + Sqrt[2])^(1/4)*x)/(1 + x^4)^(1/4)])/4 - ((2 - Sqrt[2])^(1/4)*ArcTanh[((2 - Sqrt[2])^(1/4)*x)/(1 + x^4)^(
1/4)])/4 - ((10 + 7*Sqrt[2])^(1/4)*ArcTanh[((2 - Sqrt[2])^(1/4)*x)/(1 + x^4)^(1/4)])/4 + ((10 - 7*Sqrt[2])^(1/
4)*ArcTanh[((2 + Sqrt[2])^(1/4)*x)/(1 + x^4)^(1/4)])/4 - ((2 + Sqrt[2])^(1/4)*ArcTanh[((2 + Sqrt[2])^(1/4)*x)/
(1 + x^4)^(1/4)])/4

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 277

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
1)), x] - Dist[(b*n*p)/(c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] &&
IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 331

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + (m + 1)/n), Subst[Int[x^m/(1 - b*x^n)^(
p + (m + 1)/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[
p, -2^(-1)] && IntegersQ[m, p + (m + 1)/n]

Rule 494

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> With[{k = Denominato
r[p]}, Dist[(k*a^(p + (m + 1)/n))/n, Subst[Int[(x^((k*(m + 1))/n - 1)*(c - (b*c - a*d)*x^k)^q)/(1 - b*x^k)^(p
+ q + (m + 1)/n + 1), x], x, x^(n/k)/(a + b*x^n)^(1/k)], x]] /; FreeQ[{a, b, c, d}, x] && IGtQ[n, 0] && Ration
alQ[m, p] && IntegersQ[p + (m + 1)/n, q] && LtQ[-1, p, 0]

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 1518

Int[(((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^(n_))^(q_))/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol
] :> Dist[(e*f^n)/c, Int[(f*x)^(m - n)*(d + e*x^n)^(q - 1), x], x] - Dist[f^n/c, Int[((f*x)^(m - n)*(d + e*x^n
)^(q - 1)*Simp[a*e - (c*d - b*e)*x^n, x])/(a + b*x^n + c*x^(2*n)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && E
qQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] &&  !IntegerQ[q] && GtQ[q, 0] && GtQ[m, n - 1] && LeQ[m, 2*n
- 1]

Rule 1528

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))^(q_))/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol]
 :> Int[ExpandIntegrand[(d + e*x^n)^q, (f*x)^m/(a + b*x^n + c*x^(2*n)), x], x] /; FreeQ[{a, b, c, d, e, f, q,
n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] &&  !IntegerQ[q] && IntegerQ[m]

Rule 6728

Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a +
b*x^n + c*x^(2*n)), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt [4]{1+x^4} \left (2+x^4\right )}{x^2 \left (-1+2 x^4+x^8\right )} \, dx &=\int \left (-\frac {2 \sqrt [4]{1+x^4}}{x^2}+\frac {x^2 \sqrt [4]{1+x^4} \left (5+2 x^4\right )}{-1+2 x^4+x^8}\right ) \, dx\\ &=-\left (2 \int \frac {\sqrt [4]{1+x^4}}{x^2} \, dx\right )+\int \frac {x^2 \sqrt [4]{1+x^4} \left (5+2 x^4\right )}{-1+2 x^4+x^8} \, dx\\ &=\frac {2 \sqrt [4]{1+x^4}}{x}-2 \int \frac {x^2}{\left (1+x^4\right )^{3/4}} \, dx+\int \left (\frac {5 x^2 \sqrt [4]{1+x^4}}{-1+2 x^4+x^8}+\frac {2 x^6 \sqrt [4]{1+x^4}}{-1+2 x^4+x^8}\right ) \, dx\\ &=\frac {2 \sqrt [4]{1+x^4}}{x}+2 \int \frac {x^6 \sqrt [4]{1+x^4}}{-1+2 x^4+x^8} \, dx-2 \operatorname {Subst}\left (\int \frac {x^2}{1-x^4} \, dx,x,\frac {x}{\sqrt [4]{1+x^4}}\right )+5 \int \frac {x^2 \sqrt [4]{1+x^4}}{-1+2 x^4+x^8} \, dx\\ &=\frac {2 \sqrt [4]{1+x^4}}{x}+2 \int \frac {x^2}{\left (1+x^4\right )^{3/4}} \, dx-2 \int \frac {x^2 \left (-1+x^4\right )}{\left (1+x^4\right )^{3/4} \left (-1+2 x^4+x^8\right )} \, dx+5 \int \left (-\frac {x^2 \sqrt [4]{1+x^4}}{\sqrt {2} \left (-2+2 \sqrt {2}-2 x^4\right )}-\frac {x^2 \sqrt [4]{1+x^4}}{\sqrt {2} \left (2+2 \sqrt {2}+2 x^4\right )}\right ) \, dx-\operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\frac {x}{\sqrt [4]{1+x^4}}\right )+\operatorname {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\frac {x}{\sqrt [4]{1+x^4}}\right )\\ &=\frac {2 \sqrt [4]{1+x^4}}{x}+\tan ^{-1}\left (\frac {x}{\sqrt [4]{1+x^4}}\right )-\tanh ^{-1}\left (\frac {x}{\sqrt [4]{1+x^4}}\right )-2 \int \left (-\frac {x^2}{\left (1+x^4\right )^{3/4} \left (-1+2 x^4+x^8\right )}+\frac {x^6}{\left (1+x^4\right )^{3/4} \left (-1+2 x^4+x^8\right )}\right ) \, dx+2 \operatorname {Subst}\left (\int \frac {x^2}{1-x^4} \, dx,x,\frac {x}{\sqrt [4]{1+x^4}}\right )-\frac {5 \int \frac {x^2 \sqrt [4]{1+x^4}}{-2+2 \sqrt {2}-2 x^4} \, dx}{\sqrt {2}}-\frac {5 \int \frac {x^2 \sqrt [4]{1+x^4}}{2+2 \sqrt {2}+2 x^4} \, dx}{\sqrt {2}}\\ &=\frac {2 \sqrt [4]{1+x^4}}{x}-\frac {5}{12} \left (2-\sqrt {2}\right ) x^3 F_1\left (\frac {3}{4};-\frac {1}{4},1;\frac {7}{4};-x^4,\left (1-\sqrt {2}\right ) x^4\right )-\frac {5}{12} \left (2+\sqrt {2}\right ) x^3 F_1\left (\frac {3}{4};1,-\frac {1}{4};\frac {7}{4};\left (1+\sqrt {2}\right ) x^4,-x^4\right )+\tan ^{-1}\left (\frac {x}{\sqrt [4]{1+x^4}}\right )-\tanh ^{-1}\left (\frac {x}{\sqrt [4]{1+x^4}}\right )+2 \int \frac {x^2}{\left (1+x^4\right )^{3/4} \left (-1+2 x^4+x^8\right )} \, dx-2 \int \frac {x^6}{\left (1+x^4\right )^{3/4} \left (-1+2 x^4+x^8\right )} \, dx+\operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\frac {x}{\sqrt [4]{1+x^4}}\right )-\operatorname {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\frac {x}{\sqrt [4]{1+x^4}}\right )\\ &=\frac {2 \sqrt [4]{1+x^4}}{x}-\frac {5}{12} \left (2-\sqrt {2}\right ) x^3 F_1\left (\frac {3}{4};-\frac {1}{4},1;\frac {7}{4};-x^4,\left (1-\sqrt {2}\right ) x^4\right )-\frac {5}{12} \left (2+\sqrt {2}\right ) x^3 F_1\left (\frac {3}{4};1,-\frac {1}{4};\frac {7}{4};\left (1+\sqrt {2}\right ) x^4,-x^4\right )+2 \int \left (-\frac {x^2}{\sqrt {2} \left (-2+2 \sqrt {2}-2 x^4\right ) \left (1+x^4\right )^{3/4}}-\frac {x^2}{\sqrt {2} \left (1+x^4\right )^{3/4} \left (2+2 \sqrt {2}+2 x^4\right )}\right ) \, dx-2 \int \left (-\frac {\left (-2+2 \sqrt {2}\right ) x^2}{2 \sqrt {2} \left (-2+2 \sqrt {2}-2 x^4\right ) \left (1+x^4\right )^{3/4}}+\frac {\left (2+2 \sqrt {2}\right ) x^2}{2 \sqrt {2} \left (1+x^4\right )^{3/4} \left (2+2 \sqrt {2}+2 x^4\right )}\right ) \, dx\\ &=\frac {2 \sqrt [4]{1+x^4}}{x}-\frac {5}{12} \left (2-\sqrt {2}\right ) x^3 F_1\left (\frac {3}{4};-\frac {1}{4},1;\frac {7}{4};-x^4,\left (1-\sqrt {2}\right ) x^4\right )-\frac {5}{12} \left (2+\sqrt {2}\right ) x^3 F_1\left (\frac {3}{4};1,-\frac {1}{4};\frac {7}{4};\left (1+\sqrt {2}\right ) x^4,-x^4\right )-\sqrt {2} \int \frac {x^2}{\left (-2+2 \sqrt {2}-2 x^4\right ) \left (1+x^4\right )^{3/4}} \, dx-\sqrt {2} \int \frac {x^2}{\left (1+x^4\right )^{3/4} \left (2+2 \sqrt {2}+2 x^4\right )} \, dx-\left (-2+\sqrt {2}\right ) \int \frac {x^2}{\left (-2+2 \sqrt {2}-2 x^4\right ) \left (1+x^4\right )^{3/4}} \, dx-\left (2+\sqrt {2}\right ) \int \frac {x^2}{\left (1+x^4\right )^{3/4} \left (2+2 \sqrt {2}+2 x^4\right )} \, dx\\ &=\frac {2 \sqrt [4]{1+x^4}}{x}-\frac {5}{12} \left (2-\sqrt {2}\right ) x^3 F_1\left (\frac {3}{4};-\frac {1}{4},1;\frac {7}{4};-x^4,\left (1-\sqrt {2}\right ) x^4\right )-\frac {5}{12} \left (2+\sqrt {2}\right ) x^3 F_1\left (\frac {3}{4};1,-\frac {1}{4};\frac {7}{4};\left (1+\sqrt {2}\right ) x^4,-x^4\right )-\sqrt {2} \operatorname {Subst}\left (\int \frac {x^2}{-2+2 \sqrt {2}-2 \sqrt {2} x^4} \, dx,x,\frac {x}{\sqrt [4]{1+x^4}}\right )-\sqrt {2} \operatorname {Subst}\left (\int \frac {x^2}{2+2 \sqrt {2}-2 \sqrt {2} x^4} \, dx,x,\frac {x}{\sqrt [4]{1+x^4}}\right )-\left (-2+\sqrt {2}\right ) \operatorname {Subst}\left (\int \frac {x^2}{-2+2 \sqrt {2}-2 \sqrt {2} x^4} \, dx,x,\frac {x}{\sqrt [4]{1+x^4}}\right )-\left (2+\sqrt {2}\right ) \operatorname {Subst}\left (\int \frac {x^2}{2+2 \sqrt {2}-2 \sqrt {2} x^4} \, dx,x,\frac {x}{\sqrt [4]{1+x^4}}\right )\\ &=\frac {2 \sqrt [4]{1+x^4}}{x}-\frac {5}{12} \left (2-\sqrt {2}\right ) x^3 F_1\left (\frac {3}{4};-\frac {1}{4},1;\frac {7}{4};-x^4,\left (1-\sqrt {2}\right ) x^4\right )-\frac {5}{12} \left (2+\sqrt {2}\right ) x^3 F_1\left (\frac {3}{4};1,-\frac {1}{4};\frac {7}{4};\left (1+\sqrt {2}\right ) x^4,-x^4\right )-\frac {\operatorname {Subst}\left (\int \frac {1}{\sqrt {2-\sqrt {2}}-\sqrt {2} x^2} \, dx,x,\frac {x}{\sqrt [4]{1+x^4}}\right )}{2 \sqrt {2}}-\frac {\operatorname {Subst}\left (\int \frac {1}{\sqrt {2+\sqrt {2}}-\sqrt {2} x^2} \, dx,x,\frac {x}{\sqrt [4]{1+x^4}}\right )}{2 \sqrt {2}}+\frac {\operatorname {Subst}\left (\int \frac {1}{\sqrt {2-\sqrt {2}}+\sqrt {2} x^2} \, dx,x,\frac {x}{\sqrt [4]{1+x^4}}\right )}{2 \sqrt {2}}+\frac {\operatorname {Subst}\left (\int \frac {1}{\sqrt {2+\sqrt {2}}+\sqrt {2} x^2} \, dx,x,\frac {x}{\sqrt [4]{1+x^4}}\right )}{2 \sqrt {2}}-\frac {1}{4} \left (2-\sqrt {2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {2-\sqrt {2}}+\sqrt {2} x^2} \, dx,x,\frac {x}{\sqrt [4]{1+x^4}}\right )-\frac {1}{4} \left (-2+\sqrt {2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {2-\sqrt {2}}-\sqrt {2} x^2} \, dx,x,\frac {x}{\sqrt [4]{1+x^4}}\right )-\frac {1}{4} \left (2+\sqrt {2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {2+\sqrt {2}}-\sqrt {2} x^2} \, dx,x,\frac {x}{\sqrt [4]{1+x^4}}\right )+\frac {1}{4} \left (2+\sqrt {2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {2+\sqrt {2}}+\sqrt {2} x^2} \, dx,x,\frac {x}{\sqrt [4]{1+x^4}}\right )\\ &=\frac {2 \sqrt [4]{1+x^4}}{x}-\frac {5}{12} \left (2-\sqrt {2}\right ) x^3 F_1\left (\frac {3}{4};-\frac {1}{4},1;\frac {7}{4};-x^4,\left (1-\sqrt {2}\right ) x^4\right )-\frac {5}{12} \left (2+\sqrt {2}\right ) x^3 F_1\left (\frac {3}{4};1,-\frac {1}{4};\frac {7}{4};\left (1+\sqrt {2}\right ) x^4,-x^4\right )+\frac {1}{4} \sqrt [4]{2-\sqrt {2}} \tan ^{-1}\left (\frac {\sqrt [4]{2-\sqrt {2}} x}{\sqrt [4]{1+x^4}}\right )+\frac {\left (2+\sqrt {2}\right )^{3/4} \tan ^{-1}\left (\frac {\sqrt [4]{2-\sqrt {2}} x}{\sqrt [4]{1+x^4}}\right )}{4 \sqrt [4]{2}}-\frac {\left (2-\sqrt {2}\right )^{3/4} \tan ^{-1}\left (\frac {\sqrt [4]{2+\sqrt {2}} x}{\sqrt [4]{1+x^4}}\right )}{4 \sqrt [4]{2}}+\frac {1}{4} \sqrt [4]{2+\sqrt {2}} \tan ^{-1}\left (\frac {\sqrt [4]{2+\sqrt {2}} x}{\sqrt [4]{1+x^4}}\right )-\frac {1}{4} \sqrt [4]{2-\sqrt {2}} \tanh ^{-1}\left (\frac {\sqrt [4]{2-\sqrt {2}} x}{\sqrt [4]{1+x^4}}\right )-\frac {\left (2+\sqrt {2}\right )^{3/4} \tanh ^{-1}\left (\frac {\sqrt [4]{2-\sqrt {2}} x}{\sqrt [4]{1+x^4}}\right )}{4 \sqrt [4]{2}}+\frac {1}{4} \sqrt [4]{10-7 \sqrt {2}} \tanh ^{-1}\left (\frac {\sqrt [4]{2+\sqrt {2}} x}{\sqrt [4]{1+x^4}}\right )-\frac {1}{4} \sqrt [4]{2+\sqrt {2}} \tanh ^{-1}\left (\frac {\sqrt [4]{2+\sqrt {2}} x}{\sqrt [4]{1+x^4}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 6.92, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt [4]{1+x^4} \left (2+x^4\right )}{x^2 \left (-1+2 x^4+x^8\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Integrate[((1 + x^4)^(1/4)*(2 + x^4))/(x^2*(-1 + 2*x^4 + x^8)),x]

[Out]

Integrate[((1 + x^4)^(1/4)*(2 + x^4))/(x^2*(-1 + 2*x^4 + x^8)), x]

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.00, size = 101, normalized size = 1.00 \begin {gather*} \frac {2 \sqrt [4]{1+x^4}}{x}-\frac {1}{8} \text {RootSum}\left [2-4 \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-4 \log (x)+4 \log \left (\sqrt [4]{1+x^4}-x \text {$\#$1}\right )+7 \log (x) \text {$\#$1}^4-7 \log \left (\sqrt [4]{1+x^4}-x \text {$\#$1}\right ) \text {$\#$1}^4}{-2 \text {$\#$1}^3+\text {$\#$1}^7}\&\right ] \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[((1 + x^4)^(1/4)*(2 + x^4))/(x^2*(-1 + 2*x^4 + x^8)),x]

[Out]

(2*(1 + x^4)^(1/4))/x - RootSum[2 - 4*#1^4 + #1^8 & , (-4*Log[x] + 4*Log[(1 + x^4)^(1/4) - x*#1] + 7*Log[x]*#1
^4 - 7*Log[(1 + x^4)^(1/4) - x*#1]*#1^4)/(-2*#1^3 + #1^7) & ]/8

________________________________________________________________________________________

fricas [B]  time = 11.74, size = 1214, normalized size = 12.02

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+1)^(1/4)*(x^4+2)/x^2/(x^8+2*x^4-1),x, algorithm="fricas")

[Out]

1/32*(4*sqrt(2)*x*(1393*sqrt(2) + 1970)^(1/4)*arctan(-1/98*(sqrt(2)*(69*x^8 + 18*x^4 + 2*(1451*x^6 - 601*x^2 -
 sqrt(2)*(1026*x^6 - 425*x^2))*sqrt(x^4 + 1)*sqrt(1393*sqrt(2) + 1970) - sqrt(2)*(47*x^8 + 8*x^4 - 13) - 17)*s
qrt(-(2671*sqrt(2) - 3778)*sqrt(1393*sqrt(2) + 1970)) - 196*(7*x^5 - sqrt(2)*(5*x^5 - 2*x) - 3*x)*(x^4 + 1)^(3
/4) - 196*(239*x^7 - 99*x^3 - sqrt(2)*(169*x^7 - 70*x^3))*(x^4 + 1)^(1/4)*sqrt(1393*sqrt(2) + 1970))*(1393*sqr
t(2) + 1970)^(1/4)/(x^8 + 2*x^4 - 1)) + 4*sqrt(2)*x*(-1393*sqrt(2) + 1970)^(1/4)*arctan(1/98*(sqrt(2)*(69*x^8
+ 18*x^4 + 2*(1451*x^6 - 601*x^2 + sqrt(2)*(1026*x^6 - 425*x^2))*sqrt(x^4 + 1)*sqrt(-1393*sqrt(2) + 1970) + sq
rt(2)*(47*x^8 + 8*x^4 - 13) - 17)*sqrt((2671*sqrt(2) + 3778)*sqrt(-1393*sqrt(2) + 1970))*(-1393*sqrt(2) + 1970
)^(1/4) - 196*((7*x^5 + sqrt(2)*(5*x^5 - 2*x) - 3*x)*(x^4 + 1)^(3/4) + (239*x^7 - 99*x^3 + sqrt(2)*(169*x^7 -
70*x^3))*(x^4 + 1)^(1/4)*sqrt(-1393*sqrt(2) + 1970))*(-1393*sqrt(2) + 1970)^(1/4))/(x^8 + 2*x^4 - 1)) + sqrt(2
)*x*(-1393*sqrt(2) + 1970)^(1/4)*log((4*(11*x^5 + sqrt(2)*(6*x^5 - 5*x) - x)*(x^4 + 1)^(3/4) + 4*(331*x^7 - 13
7*x^3 + sqrt(2)*(234*x^7 - 97*x^3))*(x^4 + 1)^(1/4)*sqrt(-1393*sqrt(2) + 1970) + (4*(57*x^6 - 23*x^2 + sqrt(2)
*(40*x^6 - 17*x^2))*sqrt(x^4 + 1) + (10444*x^8 + 2260*x^4 + sqrt(2)*(7385*x^8 + 1598*x^4 - 1929) - 2728)*sqrt(
-1393*sqrt(2) + 1970))*(-1393*sqrt(2) + 1970)^(1/4))/(x^8 + 2*x^4 - 1)) - sqrt(2)*x*(-1393*sqrt(2) + 1970)^(1/
4)*log((4*(11*x^5 + sqrt(2)*(6*x^5 - 5*x) - x)*(x^4 + 1)^(3/4) + 4*(331*x^7 - 137*x^3 + sqrt(2)*(234*x^7 - 97*
x^3))*(x^4 + 1)^(1/4)*sqrt(-1393*sqrt(2) + 1970) - (4*(57*x^6 - 23*x^2 + sqrt(2)*(40*x^6 - 17*x^2))*sqrt(x^4 +
 1) + (10444*x^8 + 2260*x^4 + sqrt(2)*(7385*x^8 + 1598*x^4 - 1929) - 2728)*sqrt(-1393*sqrt(2) + 1970))*(-1393*
sqrt(2) + 1970)^(1/4))/(x^8 + 2*x^4 - 1)) - sqrt(2)*x*(1393*sqrt(2) + 1970)^(1/4)*log((4*(11*x^5 - sqrt(2)*(6*
x^5 - 5*x) - x)*(x^4 + 1)^(3/4) + 4*(331*x^7 - 137*x^3 - sqrt(2)*(234*x^7 - 97*x^3))*(x^4 + 1)^(1/4)*sqrt(1393
*sqrt(2) + 1970) + (4*(57*x^6 - 23*x^2 - sqrt(2)*(40*x^6 - 17*x^2))*sqrt(x^4 + 1) + (10444*x^8 + 2260*x^4 - sq
rt(2)*(7385*x^8 + 1598*x^4 - 1929) - 2728)*sqrt(1393*sqrt(2) + 1970))*(1393*sqrt(2) + 1970)^(1/4))/(x^8 + 2*x^
4 - 1)) + sqrt(2)*x*(1393*sqrt(2) + 1970)^(1/4)*log((4*(11*x^5 - sqrt(2)*(6*x^5 - 5*x) - x)*(x^4 + 1)^(3/4) +
4*(331*x^7 - 137*x^3 - sqrt(2)*(234*x^7 - 97*x^3))*(x^4 + 1)^(1/4)*sqrt(1393*sqrt(2) + 1970) - (4*(57*x^6 - 23
*x^2 - sqrt(2)*(40*x^6 - 17*x^2))*sqrt(x^4 + 1) + (10444*x^8 + 2260*x^4 - sqrt(2)*(7385*x^8 + 1598*x^4 - 1929)
 - 2728)*sqrt(1393*sqrt(2) + 1970))*(1393*sqrt(2) + 1970)^(1/4))/(x^8 + 2*x^4 - 1)) + 64*(x^4 + 1)^(1/4))/x

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+1)^(1/4)*(x^4+2)/x^2/(x^8+2*x^4-1),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Unab
le to convert to real 1/4 Error: Bad Argument ValueUnable to convert to real 1/4 Error: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 371.22, size = 3651, normalized size = 36.15

method result size
trager \(\text {Expression too large to display}\) \(3651\)
risch \(\text {Expression too large to display}\) \(5731\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^4+1)^(1/4)*(x^4+2)/x^2/(x^8+2*x^4-1),x,method=_RETURNVERBOSE)

[Out]

2*(x^4+1)^(1/4)/x-RootOf(134217728*_Z^8-32276480*_Z^4+1)*ln(-(20272245637120*RootOf(134217728*_Z^8-32276480*_Z
^4+1)^11*x^4-20272245637120*RootOf(134217728*_Z^8-32276480*_Z^4+1)^11+9924432101376*RootOf(134217728*_Z^8-3227
6480*_Z^4+1)^7*x^4-162133966848*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6*(x^4+1)^(1/4)*x^3+4381999104*RootOf(1
34217728*_Z^8-32276480*_Z^4+1)^5*(x^4+1)^(1/2)*x^2+924327936*(x^4+1)^(3/4)*RootOf(134217728*_Z^8-32276480*_Z^4
+1)^4*x+14205776297984*RootOf(134217728*_Z^8-32276480*_Z^4+1)^7-3557860034560*RootOf(134217728*_Z^8-32276480*_
Z^4+1)^3*x^4+39861820544*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2*(x^4+1)^(1/4)*x^3-604506280*RootOf(134217728
*_Z^8-32276480*_Z^4+1)*(x^4+1)^(1/2)*x^2+9167333*(x^4+1)^(3/4)*x-2243593677312*RootOf(134217728*_Z^8-32276480*
_Z^4+1)^3)/(8192*x^4*RootOf(134217728*_Z^8-32276480*_Z^4+1)^4-8192*RootOf(134217728*_Z^8-32276480*_Z^4+1)^4+40
8*x^4+985))+134217728/2703045457*ln((7627861917696*RootOf(_Z^2-22480568320*RootOf(134217728*_Z^8-32276480*_Z^4
+1)^6+5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(_Z^2+22480568320*RootOf(134217728*_Z^8-32276
480*_Z^4+1)^6-5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(134217728*_Z^8-32276480*_Z^4+1)^9*x^
4+86751896928256*RootOf(_Z^2+22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6-5406092307*RootOf(134217728*
_Z^8-32276480*_Z^4+1)^2)*RootOf(134217728*_Z^8-32276480*_Z^4+1)^7*RootOf(_Z^2-22480568320*RootOf(134217728*_Z^
8-32276480*_Z^4+1)^6+5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*(x^4+1)^(1/2)*x^2-7627861917696*Root
Of(_Z^2-22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6+5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)
^2)*RootOf(_Z^2+22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6-5406092307*RootOf(134217728*_Z^8-32276480
*_Z^4+1)^2)*RootOf(134217728*_Z^8-32276480*_Z^4+1)^9+5574162907136*RootOf(_Z^2-22480568320*RootOf(134217728*_Z
^8-32276480*_Z^4+1)^6+5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(_Z^2+22480568320*RootOf(1342
17728*_Z^8-32276480*_Z^4+1)^6-5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(134217728*_Z^8-32276
480*_Z^4+1)^5*x^4+1094058556944023552*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6*(x^4+1)^(1/4)*x^3-2391092586086
4*RootOf(_Z^2+22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6-5406092307*RootOf(134217728*_Z^8-32276480*_
Z^4+1)^2)*RootOf(134217728*_Z^8-32276480*_Z^4+1)^3*RootOf(_Z^2-22480568320*RootOf(134217728*_Z^8-32276480*_Z^4
+1)^6+5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*(x^4+1)^(1/2)*x^2+841447238582272*(x^4+1)^(3/4)*Roo
tOf(134217728*_Z^8-32276480*_Z^4+1)^4*x+3505339236352*RootOf(_Z^2-22480568320*RootOf(134217728*_Z^8-32276480*_
Z^4+1)^6+5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(_Z^2+22480568320*RootOf(134217728*_Z^8-32
276480*_Z^4+1)^6-5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(134217728*_Z^8-32276480*_Z^4+1)^5
+4359946240*RootOf(_Z^2-22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6+5406092307*RootOf(134217728*_Z^8-
32276480*_Z^4+1)^2)*RootOf(_Z^2+22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6-5406092307*RootOf(1342177
28*_Z^8-32276480*_Z^4+1)^2)*RootOf(134217728*_Z^8-32276480*_Z^4+1)*x^4-264088838610719360*RootOf(134217728*_Z^
8-32276480*_Z^4+1)^2*(x^4+1)^(1/4)*x^3+60734728373333*(x^4+1)^(3/4)*x+2749390848*RootOf(_Z^2-22480568320*RootO
f(134217728*_Z^8-32276480*_Z^4+1)^6+5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(134217728*_Z^8
-32276480*_Z^4+1)*RootOf(_Z^2+22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6-5406092307*RootOf(134217728
*_Z^8-32276480*_Z^4+1)^2))/(8192*x^4*RootOf(134217728*_Z^8-32276480*_Z^4+1)^4-8192*RootOf(134217728*_Z^8-32276
480*_Z^4+1)^4+408*x^4+985))*RootOf(134217728*_Z^8-32276480*_Z^4+1)^7*RootOf(_Z^2-22480568320*RootOf(134217728*
_Z^8-32276480*_Z^4+1)^6+5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(_Z^2+22480568320*RootOf(13
4217728*_Z^8-32276480*_Z^4+1)^6-5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)-16138240/2703045457*ln((7
627861917696*RootOf(_Z^2-22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6+5406092307*RootOf(134217728*_Z^8
-32276480*_Z^4+1)^2)*RootOf(_Z^2+22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6-5406092307*RootOf(134217
728*_Z^8-32276480*_Z^4+1)^2)*RootOf(134217728*_Z^8-32276480*_Z^4+1)^9*x^4+86751896928256*RootOf(_Z^2+224805683
20*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6-5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(134217
728*_Z^8-32276480*_Z^4+1)^7*RootOf(_Z^2-22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6+5406092307*RootOf
(134217728*_Z^8-32276480*_Z^4+1)^2)*(x^4+1)^(1/2)*x^2-7627861917696*RootOf(_Z^2-22480568320*RootOf(134217728*_
Z^8-32276480*_Z^4+1)^6+5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(_Z^2+22480568320*RootOf(134
217728*_Z^8-32276480*_Z^4+1)^6-5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(134217728*_Z^8-3227
6480*_Z^4+1)^9+5574162907136*RootOf(_Z^2-22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6+5406092307*RootO
f(134217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(_Z^2+22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6-54060923
07*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(134217728*_Z^8-32276480*_Z^4+1)^5*x^4+1094058556944023552*
RootOf(134217728*_Z^8-32276480*_Z^4+1)^6*(x^4+1)^(1/4)*x^3-23910925860864*RootOf(_Z^2+22480568320*RootOf(13421
7728*_Z^8-32276480*_Z^4+1)^6-5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(134217728*_Z^8-322764
80*_Z^4+1)^3*RootOf(_Z^2-22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6+5406092307*RootOf(134217728*_Z^8
-32276480*_Z^4+1)^2)*(x^4+1)^(1/2)*x^2+841447238582272*(x^4+1)^(3/4)*RootOf(134217728*_Z^8-32276480*_Z^4+1)^4*
x+3505339236352*RootOf(_Z^2-22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6+5406092307*RootOf(134217728*_
Z^8-32276480*_Z^4+1)^2)*RootOf(_Z^2+22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6-5406092307*RootOf(134
217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(134217728*_Z^8-32276480*_Z^4+1)^5+4359946240*RootOf(_Z^2-22480568320*Ro
otOf(134217728*_Z^8-32276480*_Z^4+1)^6+5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(_Z^2+224805
68320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6-5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(134
217728*_Z^8-32276480*_Z^4+1)*x^4-264088838610719360*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2*(x^4+1)^(1/4)*x^3
+60734728373333*(x^4+1)^(3/4)*x+2749390848*RootOf(_Z^2-22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6+54
06092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(134217728*_Z^8-32276480*_Z^4+1)*RootOf(_Z^2+22480568
320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6-5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2))/(8192*x^4*R
ootOf(134217728*_Z^8-32276480*_Z^4+1)^4-8192*RootOf(134217728*_Z^8-32276480*_Z^4+1)^4+408*x^4+985))*RootOf(134
217728*_Z^8-32276480*_Z^4+1)^3*RootOf(_Z^2-22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6+5406092307*Roo
tOf(134217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(_Z^2+22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6-540609
2307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)-1/1393*RootOf(_Z^2-22480568320*RootOf(134217728*_Z^8-32276480*_
Z^4+1)^6+5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*ln(-(7627861917696*RootOf(_Z^2-22480568320*RootO
f(134217728*_Z^8-32276480*_Z^4+1)^6+5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(134217728*_Z^8
-32276480*_Z^4+1)^10*x^4-7627861917696*RootOf(_Z^2-22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6+540609
2307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(134217728*_Z^8-32276480*_Z^4+1)^10-9242836729856*RootOf(
_Z^2-22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6+5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)
*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6*x^4-8244637831528448*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6*(x^4+1
)^(1/4)*x^3+9676914688*RootOf(134217728*_Z^8-32276480*_Z^4+1)^4*RootOf(_Z^2-22480568320*RootOf(134217728*_Z^8-
32276480*_Z^4+1)^6+5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*(x^4+1)^(1/2)*x^2+604054011904*(x^4+1)
^(3/4)*RootOf(134217728*_Z^8-32276480*_Z^4+1)^4*x+163334586368*RootOf(_Z^2-22480568320*RootOf(134217728*_Z^8-3
2276480*_Z^4+1)^6+5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(134217728*_Z^8-32276480*_Z^4+1)^
6+1785944985600*RootOf(_Z^2-22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6+5406092307*RootOf(134217728*_
Z^8-32276480*_Z^4+1)^2)*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2*x^4+1982589963786880*RootOf(134217728*_Z^8-32
276480*_Z^4+1)^2*(x^4+1)^(1/4)*x^3-263176704*RootOf(_Z^2-22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6+
5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*(x^4+1)^(1/2)*x^2-188861960721*(x^4+1)^(3/4)*x+4045895495
68*RootOf(_Z^2-22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6+5406092307*RootOf(134217728*_Z^8-32276480*
_Z^4+1)^2)*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)/(8192*x^4*RootOf(134217728*_Z^8-32276480*_Z^4+1)^4-8192*R
ootOf(134217728*_Z^8-32276480*_Z^4+1)^4-2378*x^4+985))+1/1393*RootOf(_Z^2+22480568320*RootOf(134217728*_Z^8-32
276480*_Z^4+1)^6-5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*ln(-(7627861917696*RootOf(_Z^2+224805683
20*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6-5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(134217
728*_Z^8-32276480*_Z^4+1)^10*x^4-7627861917696*RootOf(_Z^2+22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^
6-5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(134217728*_Z^8-32276480*_Z^4+1)^10-9242836729856
*RootOf(_Z^2+22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6-5406092307*RootOf(134217728*_Z^8-32276480*_Z
^4+1)^2)*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6*x^4+8244637831528448*RootOf(134217728*_Z^8-32276480*_Z^4+1)^
6*(x^4+1)^(1/4)*x^3-9676914688*RootOf(_Z^2+22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6-5406092307*Roo
tOf(134217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(134217728*_Z^8-32276480*_Z^4+1)^4*(x^4+1)^(1/2)*x^2+604054011904
*(x^4+1)^(3/4)*RootOf(134217728*_Z^8-32276480*_Z^4+1)^4*x+163334586368*RootOf(_Z^2+22480568320*RootOf(13421772
8*_Z^8-32276480*_Z^4+1)^6-5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(134217728*_Z^8-32276480*
_Z^4+1)^6+1785944985600*RootOf(_Z^2+22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6-5406092307*RootOf(134
217728*_Z^8-32276480*_Z^4+1)^2)*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2*x^4-1982589963786880*RootOf(134217728
*_Z^8-32276480*_Z^4+1)^2*(x^4+1)^(1/4)*x^3+263176704*RootOf(_Z^2+22480568320*RootOf(134217728*_Z^8-32276480*_Z
^4+1)^6-5406092307*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)*(x^4+1)^(1/2)*x^2-188861960721*(x^4+1)^(3/4)*x+40
4589549568*RootOf(_Z^2+22480568320*RootOf(134217728*_Z^8-32276480*_Z^4+1)^6-5406092307*RootOf(134217728*_Z^8-3
2276480*_Z^4+1)^2)*RootOf(134217728*_Z^8-32276480*_Z^4+1)^2)/(8192*x^4*RootOf(134217728*_Z^8-32276480*_Z^4+1)^
4-8192*RootOf(134217728*_Z^8-32276480*_Z^4+1)^4-2378*x^4+985))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{4} + 2\right )} {\left (x^{4} + 1\right )}^{\frac {1}{4}}}{{\left (x^{8} + 2 \, x^{4} - 1\right )} x^{2}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+1)^(1/4)*(x^4+2)/x^2/(x^8+2*x^4-1),x, algorithm="maxima")

[Out]

integrate((x^4 + 2)*(x^4 + 1)^(1/4)/((x^8 + 2*x^4 - 1)*x^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (x^4+1\right )}^{1/4}\,\left (x^4+2\right )}{x^2\,\left (x^8+2\,x^4-1\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((x^4 + 1)^(1/4)*(x^4 + 2))/(x^2*(2*x^4 + x^8 - 1)),x)

[Out]

int(((x^4 + 1)^(1/4)*(x^4 + 2))/(x^2*(2*x^4 + x^8 - 1)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**4+1)**(1/4)*(x**4+2)/x**2/(x**8+2*x**4-1),x)

[Out]

Timed out

________________________________________________________________________________________