3.15.74 \(\int \frac {1+k^3 x^3}{\sqrt {(1-x) x (1-k^2 x)} (-1+k^3 x^3)} \, dx\)

Optimal. Leaf size=104 \[ -\frac {2 \tan ^{-1}\left (\frac {(k-1) x}{\sqrt {k^2 x^3+\left (-k^2-1\right ) x^2+x}}\right )}{3 (k-1)}-\frac {4 \tan ^{-1}\left (\frac {\sqrt {k^2+k+1} \sqrt {k^2 x^3+\left (-k^2-1\right ) x^2+x}}{(x-1) \left (k^2 x-1\right )}\right )}{3 \sqrt {k^2+k+1}} \]

________________________________________________________________________________________

Rubi [C]  time = 4.13, antiderivative size = 362, normalized size of antiderivative = 3.48, number of steps used = 19, number of rules used = 8, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {6718, 6725, 115, 6688, 934, 12, 168, 537} \begin {gather*} \frac {4 (1-x) \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x} \Pi \left (\frac {1}{k};\sin ^{-1}\left (\sqrt {-k^2} \sqrt {-x}\right )|\frac {1}{k^2}\right )}{3 \sqrt {-k^2} \sqrt {x-x^2} \sqrt {(1-x) x \left (1-k^2 x\right )}}+\frac {4 (1-x) \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x} \Pi \left (-\frac {\sqrt [3]{-1}}{k};\sin ^{-1}\left (\sqrt {-k^2} \sqrt {-x}\right )|\frac {1}{k^2}\right )}{3 \sqrt {-k^2} \sqrt {x-x^2} \sqrt {(1-x) x \left (1-k^2 x\right )}}+\frac {4 (1-x) \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x} \Pi \left (\frac {(-1)^{2/3}}{k};\sin ^{-1}\left (\sqrt {-k^2} \sqrt {-x}\right )|\frac {1}{k^2}\right )}{3 \sqrt {-k^2} \sqrt {x-x^2} \sqrt {(1-x) x \left (1-k^2 x\right )}}+\frac {2 \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} F\left (\sin ^{-1}\left (\sqrt {x}\right )|k^2\right )}{\sqrt {(1-x) x \left (1-k^2 x\right )}} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Int[(1 + k^3*x^3)/(Sqrt[(1 - x)*x*(1 - k^2*x)]*(-1 + k^3*x^3)),x]

[Out]

(2*Sqrt[1 - x]*Sqrt[x]*Sqrt[1 - k^2*x]*EllipticF[ArcSin[Sqrt[x]], k^2])/Sqrt[(1 - x)*x*(1 - k^2*x)] + (4*(1 -
x)*Sqrt[-x]*Sqrt[x]*Sqrt[1 - k^2*x]*EllipticPi[k^(-1), ArcSin[Sqrt[-k^2]*Sqrt[-x]], k^(-2)])/(3*Sqrt[-k^2]*Sqr
t[(1 - x)*x*(1 - k^2*x)]*Sqrt[x - x^2]) + (4*(1 - x)*Sqrt[-x]*Sqrt[x]*Sqrt[1 - k^2*x]*EllipticPi[-((-1)^(1/3)/
k), ArcSin[Sqrt[-k^2]*Sqrt[-x]], k^(-2)])/(3*Sqrt[-k^2]*Sqrt[(1 - x)*x*(1 - k^2*x)]*Sqrt[x - x^2]) + (4*(1 - x
)*Sqrt[-x]*Sqrt[x]*Sqrt[1 - k^2*x]*EllipticPi[(-1)^(2/3)/k, ArcSin[Sqrt[-k^2]*Sqrt[-x]], k^(-2)])/(3*Sqrt[-k^2
]*Sqrt[(1 - x)*x*(1 - k^2*x)]*Sqrt[x - x^2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 115

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d), 2]*E
llipticF[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-(b/d), 2])], (c*f)/(d*e)])/(b*Sqrt[e]), x] /; FreeQ[{b, c, d, e, f}, x]
 && GtQ[c, 0] && GtQ[e, 0] && (GtQ[-(b/d), 0] || LtQ[-(b/f), 0])

Rule 168

Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_Sym
bol] :> Dist[-2, Subst[Int[1/(Simp[b*c - a*d - b*x^2, x]*Sqrt[Simp[(d*e - c*f)/d + (f*x^2)/d, x]]*Sqrt[Simp[(d
*g - c*h)/d + (h*x^2)/d, x]]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && GtQ[(d*e - c
*f)/d, 0]

Rule 537

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1*Ellipt
icPi[(b*c)/(a*d), ArcSin[Rt[-(d/c), 2]*x], (c*f)/(d*e)])/(a*Sqrt[c]*Sqrt[e]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b,
 c, d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-(f/e), -(d/c)
])

Rule 934

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Wi
th[{q = Rt[b^2 - 4*a*c, 2]}, Dist[(Sqrt[b - q + 2*c*x]*Sqrt[b + q + 2*c*x])/Sqrt[a + b*x + c*x^2], Int[1/((d +
 e*x)*Sqrt[f + g*x]*Sqrt[b - q + 2*c*x]*Sqrt[b + q + 2*c*x]), x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && Ne
Q[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6718

Int[(u_.)*((a_.)*(v_)^(m_.)*(w_)^(n_.)*(z_)^(q_.))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a*v^m*w^n*z^q)^FracP
art[p])/(v^(m*FracPart[p])*w^(n*FracPart[p])*z^(q*FracPart[p])), Int[u*v^(m*p)*w^(n*p)*z^(p*q), x], x] /; Free
Q[{a, m, n, p, q}, x] &&  !IntegerQ[p] &&  !FreeQ[v, x] &&  !FreeQ[w, x] &&  !FreeQ[z, x]

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {1+k^3 x^3}{\sqrt {(1-x) x \left (1-k^2 x\right )} \left (-1+k^3 x^3\right )} \, dx &=\frac {\left (\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1+k^3 x^3}{\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} \left (-1+k^3 x^3\right )} \, dx}{\sqrt {(1-x) x \left (1-k^2 x\right )}}\\ &=\frac {\left (\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \left (\frac {1}{\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}}+\frac {2}{\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} \left (-1+k^3 x^3\right )}\right ) \, dx}{\sqrt {(1-x) x \left (1-k^2 x\right )}}\\ &=\frac {\left (\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}} \, dx}{\sqrt {(1-x) x \left (1-k^2 x\right )}}+\frac {\left (2 \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} \left (-1+k^3 x^3\right )} \, dx}{\sqrt {(1-x) x \left (1-k^2 x\right )}}\\ &=\frac {2 \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} F\left (\sin ^{-1}\left (\sqrt {x}\right )|k^2\right )}{\sqrt {(1-x) x \left (1-k^2 x\right )}}+\frac {\left (2 \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {1-k^2 x} \sqrt {x-x^2} \left (-1+k^3 x^3\right )} \, dx}{\sqrt {(1-x) x \left (1-k^2 x\right )}}\\ &=\frac {2 \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} F\left (\sin ^{-1}\left (\sqrt {x}\right )|k^2\right )}{\sqrt {(1-x) x \left (1-k^2 x\right )}}+\frac {\left (2 \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \left (-\frac {1}{3 (1-k x) \sqrt {1-k^2 x} \sqrt {x-x^2}}-\frac {1}{3 \left (1+\sqrt [3]{-1} k x\right ) \sqrt {1-k^2 x} \sqrt {x-x^2}}-\frac {1}{3 \left (1-(-1)^{2/3} k x\right ) \sqrt {1-k^2 x} \sqrt {x-x^2}}\right ) \, dx}{\sqrt {(1-x) x \left (1-k^2 x\right )}}\\ &=\frac {2 \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} F\left (\sin ^{-1}\left (\sqrt {x}\right )|k^2\right )}{\sqrt {(1-x) x \left (1-k^2 x\right )}}-\frac {\left (2 \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{(1-k x) \sqrt {1-k^2 x} \sqrt {x-x^2}} \, dx}{3 \sqrt {(1-x) x \left (1-k^2 x\right )}}-\frac {\left (2 \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\left (1+\sqrt [3]{-1} k x\right ) \sqrt {1-k^2 x} \sqrt {x-x^2}} \, dx}{3 \sqrt {(1-x) x \left (1-k^2 x\right )}}-\frac {\left (2 \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\left (1-(-1)^{2/3} k x\right ) \sqrt {1-k^2 x} \sqrt {x-x^2}} \, dx}{3 \sqrt {(1-x) x \left (1-k^2 x\right )}}\\ &=\frac {2 \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} F\left (\sin ^{-1}\left (\sqrt {x}\right )|k^2\right )}{\sqrt {(1-x) x \left (1-k^2 x\right )}}-\frac {\left (2 \sqrt {2} \sqrt {2-2 x} \sqrt {1-x} \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {2} \sqrt {2-2 x} \sqrt {-x} (1-k x) \sqrt {1-k^2 x}} \, dx}{3 \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}}-\frac {\left (2 \sqrt {2} \sqrt {2-2 x} \sqrt {1-x} \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {2} \sqrt {2-2 x} \sqrt {-x} \left (1+\sqrt [3]{-1} k x\right ) \sqrt {1-k^2 x}} \, dx}{3 \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}}-\frac {\left (2 \sqrt {2} \sqrt {2-2 x} \sqrt {1-x} \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {2} \sqrt {2-2 x} \sqrt {-x} \left (1-(-1)^{2/3} k x\right ) \sqrt {1-k^2 x}} \, dx}{3 \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}}\\ &=\frac {2 \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} F\left (\sin ^{-1}\left (\sqrt {x}\right )|k^2\right )}{\sqrt {(1-x) x \left (1-k^2 x\right )}}-\frac {\left (2 \sqrt {2-2 x} \sqrt {1-x} \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {2-2 x} \sqrt {-x} (1-k x) \sqrt {1-k^2 x}} \, dx}{3 \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}}-\frac {\left (2 \sqrt {2-2 x} \sqrt {1-x} \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {2-2 x} \sqrt {-x} \left (1+\sqrt [3]{-1} k x\right ) \sqrt {1-k^2 x}} \, dx}{3 \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}}-\frac {\left (2 \sqrt {2-2 x} \sqrt {1-x} \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \int \frac {1}{\sqrt {2-2 x} \sqrt {-x} \left (1-(-1)^{2/3} k x\right ) \sqrt {1-k^2 x}} \, dx}{3 \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}}\\ &=\frac {2 \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} F\left (\sin ^{-1}\left (\sqrt {x}\right )|k^2\right )}{\sqrt {(1-x) x \left (1-k^2 x\right )}}+\frac {\left (4 \sqrt {2-2 x} \sqrt {1-x} \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {2+2 x^2} \left (1+k x^2\right ) \sqrt {1+k^2 x^2}} \, dx,x,\sqrt {-x}\right )}{3 \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}}+\frac {\left (4 \sqrt {2-2 x} \sqrt {1-x} \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {2+2 x^2} \left (1-\sqrt [3]{-1} k x^2\right ) \sqrt {1+k^2 x^2}} \, dx,x,\sqrt {-x}\right )}{3 \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}}+\frac {\left (4 \sqrt {2-2 x} \sqrt {1-x} \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {2+2 x^2} \left (1+(-1)^{2/3} k x^2\right ) \sqrt {1+k^2 x^2}} \, dx,x,\sqrt {-x}\right )}{3 \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}}\\ &=\frac {2 \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} F\left (\sin ^{-1}\left (\sqrt {x}\right )|k^2\right )}{\sqrt {(1-x) x \left (1-k^2 x\right )}}+\frac {4 (1-x) \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x} \Pi \left (\frac {1}{k};\sin ^{-1}\left (\sqrt {-k^2} \sqrt {-x}\right )|\frac {1}{k^2}\right )}{3 \sqrt {-k^2} \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}}+\frac {4 (1-x) \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x} \Pi \left (-\frac {\sqrt [3]{-1}}{k};\sin ^{-1}\left (\sqrt {-k^2} \sqrt {-x}\right )|\frac {1}{k^2}\right )}{3 \sqrt {-k^2} \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}}+\frac {4 (1-x) \sqrt {-x} \sqrt {x} \sqrt {1-k^2 x} \Pi \left (\frac {(-1)^{2/3}}{k};\sin ^{-1}\left (\sqrt {-k^2} \sqrt {-x}\right )|\frac {1}{k^2}\right )}{3 \sqrt {-k^2} \sqrt {(1-x) x \left (1-k^2 x\right )} \sqrt {x-x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 6.62, size = 310, normalized size = 2.98 \begin {gather*} -\frac {2 \sqrt {\frac {1}{x-1}+1} (x-1)^{3/2} \sqrt {\frac {1-\frac {1}{k^2}}{x-1}+1} \sqrt {k^2 x-1} \left (2 i \sqrt {3} \left (k^2+k+1\right ) \Pi \left (\frac {k-1}{k};i \sinh ^{-1}\left (\frac {1}{\sqrt {x-1}}\right )|1-\frac {1}{k^2}\right )+(k-1) \left (\left (\left (3-i \sqrt {3}\right ) k-2 i \sqrt {3}\right ) \Pi \left (\frac {2 \left (k^2+k+1\right )}{k \left (2 k-i \sqrt {3}+1\right )};i \sinh ^{-1}\left (\frac {1}{\sqrt {x-1}}\right )|1-\frac {1}{k^2}\right )-i \left (2 \sqrt {3}+\left (\sqrt {3}-3 i\right ) k\right ) \Pi \left (\frac {2 \left (k^2+k+1\right )}{k \left (2 k+i \sqrt {3}+1\right )};i \sinh ^{-1}\left (\frac {1}{\sqrt {x-1}}\right )|1-\frac {1}{k^2}\right )\right )-3 i \sqrt {3} \left (k^3+1\right ) F\left (i \sinh ^{-1}\left (\frac {1}{\sqrt {x-1}}\right )|1-\frac {1}{k^2}\right )\right )}{3 \left (k^3-1\right ) \sqrt {(x-1) x \left (k^2 x-1\right )} \sqrt {3 k^2 x-3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(1 + k^3*x^3)/(Sqrt[(1 - x)*x*(1 - k^2*x)]*(-1 + k^3*x^3)),x]

[Out]

(-2*Sqrt[1 + (-1 + x)^(-1)]*Sqrt[1 + (1 - k^(-2))/(-1 + x)]*(-1 + x)^(3/2)*Sqrt[-1 + k^2*x]*((-3*I)*Sqrt[3]*(1
 + k^3)*EllipticF[I*ArcSinh[1/Sqrt[-1 + x]], 1 - k^(-2)] + (2*I)*Sqrt[3]*(1 + k + k^2)*EllipticPi[(-1 + k)/k,
I*ArcSinh[1/Sqrt[-1 + x]], 1 - k^(-2)] + (-1 + k)*(((-2*I)*Sqrt[3] + (3 - I*Sqrt[3])*k)*EllipticPi[(2*(1 + k +
 k^2))/(k*(1 - I*Sqrt[3] + 2*k)), I*ArcSinh[1/Sqrt[-1 + x]], 1 - k^(-2)] - I*(2*Sqrt[3] + (-3*I + Sqrt[3])*k)*
EllipticPi[(2*(1 + k + k^2))/(k*(1 + I*Sqrt[3] + 2*k)), I*ArcSinh[1/Sqrt[-1 + x]], 1 - k^(-2)])))/(3*(-1 + k^3
)*Sqrt[(-1 + x)*x*(-1 + k^2*x)]*Sqrt[-3 + 3*k^2*x])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.36, size = 104, normalized size = 1.00 \begin {gather*} -\frac {2 \tan ^{-1}\left (\frac {(-1+k) x}{\sqrt {x+\left (-1-k^2\right ) x^2+k^2 x^3}}\right )}{3 (-1+k)}-\frac {4 \tan ^{-1}\left (\frac {\sqrt {1+k+k^2} \sqrt {x+\left (-1-k^2\right ) x^2+k^2 x^3}}{(-1+x) \left (-1+k^2 x\right )}\right )}{3 \sqrt {1+k+k^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(1 + k^3*x^3)/(Sqrt[(1 - x)*x*(1 - k^2*x)]*(-1 + k^3*x^3)),x]

[Out]

(-2*ArcTan[((-1 + k)*x)/Sqrt[x + (-1 - k^2)*x^2 + k^2*x^3]])/(3*(-1 + k)) - (4*ArcTan[(Sqrt[1 + k + k^2]*Sqrt[
x + (-1 - k^2)*x^2 + k^2*x^3])/((-1 + x)*(-1 + k^2*x))])/(3*Sqrt[1 + k + k^2])

________________________________________________________________________________________

fricas [B]  time = 0.68, size = 207, normalized size = 1.99 \begin {gather*} \frac {2 \, \sqrt {k^{2} + k + 1} {\left (k - 1\right )} \arctan \left (\frac {\sqrt {k^{2} x^{3} - {\left (k^{2} + 1\right )} x^{2} + x} {\left (k^{2} x^{2} - {\left (2 \, k^{2} + k + 2\right )} x + 1\right )} \sqrt {k^{2} + k + 1}}{2 \, {\left ({\left (k^{4} + k^{3} + k^{2}\right )} x^{3} - {\left (k^{4} + k^{3} + 2 \, k^{2} + k + 1\right )} x^{2} + {\left (k^{2} + k + 1\right )} x\right )}}\right ) + {\left (k^{2} + k + 1\right )} \arctan \left (\frac {\sqrt {k^{2} x^{3} - {\left (k^{2} + 1\right )} x^{2} + x} {\left (k^{2} x^{2} - 2 \, {\left (k^{2} - k + 1\right )} x + 1\right )}}{2 \, {\left ({\left (k^{3} - k^{2}\right )} x^{3} - {\left (k^{3} - k^{2} + k - 1\right )} x^{2} + {\left (k - 1\right )} x\right )}}\right )}{3 \, {\left (k^{3} - 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((k^3*x^3+1)/((1-x)*x*(-k^2*x+1))^(1/2)/(k^3*x^3-1),x, algorithm="fricas")

[Out]

1/3*(2*sqrt(k^2 + k + 1)*(k - 1)*arctan(1/2*sqrt(k^2*x^3 - (k^2 + 1)*x^2 + x)*(k^2*x^2 - (2*k^2 + k + 2)*x + 1
)*sqrt(k^2 + k + 1)/((k^4 + k^3 + k^2)*x^3 - (k^4 + k^3 + 2*k^2 + k + 1)*x^2 + (k^2 + k + 1)*x)) + (k^2 + k +
1)*arctan(1/2*sqrt(k^2*x^3 - (k^2 + 1)*x^2 + x)*(k^2*x^2 - 2*(k^2 - k + 1)*x + 1)/((k^3 - k^2)*x^3 - (k^3 - k^
2 + k - 1)*x^2 + (k - 1)*x)))/(k^3 - 1)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {k^{3} x^{3} + 1}{{\left (k^{3} x^{3} - 1\right )} \sqrt {{\left (k^{2} x - 1\right )} {\left (x - 1\right )} x}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((k^3*x^3+1)/((1-x)*x*(-k^2*x+1))^(1/2)/(k^3*x^3-1),x, algorithm="giac")

[Out]

integrate((k^3*x^3 + 1)/((k^3*x^3 - 1)*sqrt((k^2*x - 1)*(x - 1)*x)), x)

________________________________________________________________________________________

maple [C]  time = 0.15, size = 363, normalized size = 3.49

method result size
default \(-\frac {2 \sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}\, \sqrt {\frac {-1+x}{\frac {1}{k^{2}}-1}}\, \sqrt {k^{2} x}\, \EllipticF \left (\sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}, \sqrt {\frac {1}{k^{2} \left (\frac {1}{k^{2}}-1\right )}}\right )}{k^{2} \sqrt {k^{2} x^{3}-k^{2} x^{2}-x^{2}+x}}-\frac {4 \sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}\, \sqrt {\frac {-1+x}{\frac {1}{k^{2}}-1}}\, \sqrt {k^{2} x}\, \EllipticPi \left (\sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}, \frac {1}{k^{2} \left (\frac {1}{k^{2}}-\frac {1}{k}\right )}, \sqrt {\frac {1}{k^{2} \left (\frac {1}{k^{2}}-1\right )}}\right )}{3 k^{3} \sqrt {k^{2} x^{3}-k^{2} x^{2}-x^{2}+x}\, \left (\frac {1}{k^{2}}-\frac {1}{k}\right )}-\frac {4 \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (k^{2} \textit {\_Z}^{2}+k \textit {\_Z} +1\right )}{\sum }\frac {\left (-\underline {\hspace {1.25 ex}}\alpha k -2\right ) \left (\underline {\hspace {1.25 ex}}\alpha \,k^{2}+k +1\right ) \sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}\, \sqrt {\frac {-1+x}{\frac {1}{k^{2}}-1}}\, \sqrt {k^{2} x}\, \EllipticPi \left (\sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}, \frac {\underline {\hspace {1.25 ex}}\alpha \,k^{2}+k +1}{k^{2}+k +1}, \sqrt {\frac {1}{k^{2} \left (\frac {1}{k^{2}}-1\right )}}\right )}{\left (2 \underline {\hspace {1.25 ex}}\alpha k +1\right ) \left (k^{2}+k +1\right ) \sqrt {x \left (k^{2} x^{2}-k^{2} x -x +1\right )}}\right )}{3 k}\) \(363\)
elliptic \(-\frac {2 \sqrt {-k^{2} x +1}\, \sqrt {-\frac {1}{\frac {1}{k^{2}}-1}+\frac {x}{\frac {1}{k^{2}}-1}}\, \sqrt {k^{2} x}\, \EllipticF \left (\sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}, \sqrt {\frac {1}{k^{2} \left (\frac {1}{k^{2}}-1\right )}}\right )}{k^{2} \sqrt {k^{2} x^{3}-k^{2} x^{2}-x^{2}+x}}-\frac {4 \sqrt {-k^{2} x +1}\, \sqrt {-\frac {1}{\frac {1}{k^{2}}-1}+\frac {x}{\frac {1}{k^{2}}-1}}\, \sqrt {k^{2} x}\, \EllipticPi \left (\sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}, \frac {1}{k^{2} \left (\frac {1}{k^{2}}-1\right )}, \sqrt {\frac {1}{k^{2} \left (\frac {1}{k^{2}}-1\right )}}\right )}{3 k^{2} \sqrt {k^{2} x^{3}-k^{2} x^{2}-x^{2}+x}\, \left (\frac {1}{k^{2}}-1\right )}-\frac {4 k^{2} \sqrt {-k^{2} x +1}\, \sqrt {-\frac {\left (-1+x \right ) k^{2}}{k^{2}-1}}\, \sqrt {k^{2} x}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (k^{2} \textit {\_Z}^{2}+k \textit {\_Z} +1\right )}{\sum }\frac {\EllipticPi \left (\sqrt {-k^{2} x +1}, \frac {\underline {\hspace {1.25 ex}}\alpha \,k^{2}+k +1}{k^{2}+k +1}, \sqrt {-\frac {1}{k^{2}-1}}\right ) \underline {\hspace {1.25 ex}}\alpha ^{2}}{2 \underline {\hspace {1.25 ex}}\alpha k +1}\right )}{3 \left (k^{2}+k +1\right ) \sqrt {x \left (k^{2} x^{2}-k^{2} x -x +1\right )}}-\frac {4 \sqrt {-k^{2} x +1}\, \sqrt {-\frac {\left (-1+x \right ) k^{2}}{k^{2}-1}}\, \sqrt {k^{2} x}\, k \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (k^{2} \textit {\_Z}^{2}+k \textit {\_Z} +1\right )}{\sum }\frac {\EllipticPi \left (\sqrt {-k^{2} x +1}, \frac {\underline {\hspace {1.25 ex}}\alpha \,k^{2}+k +1}{k^{2}+k +1}, \sqrt {-\frac {1}{k^{2}-1}}\right ) \underline {\hspace {1.25 ex}}\alpha }{2 \underline {\hspace {1.25 ex}}\alpha k +1}\right )}{\left (k^{2}+k +1\right ) \sqrt {x \left (k^{2} x^{2}-k^{2} x -x +1\right )}}-\frac {4 \sqrt {-k^{2} x +1}\, \sqrt {-\frac {\left (-1+x \right ) k^{2}}{k^{2}-1}}\, \sqrt {k^{2} x}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (k^{2} \textit {\_Z}^{2}+k \textit {\_Z} +1\right )}{\sum }\frac {\EllipticPi \left (\sqrt {-k^{2} x +1}, \frac {\underline {\hspace {1.25 ex}}\alpha \,k^{2}+k +1}{k^{2}+k +1}, \sqrt {-\frac {1}{k^{2}-1}}\right ) \underline {\hspace {1.25 ex}}\alpha }{2 \underline {\hspace {1.25 ex}}\alpha k +1}\right )}{3 \left (k^{2}+k +1\right ) \sqrt {x \left (k^{2} x^{2}-k^{2} x -x +1\right )}}-\frac {8 \sqrt {-k^{2} x +1}\, \sqrt {-\frac {\left (-1+x \right ) k^{2}}{k^{2}-1}}\, \sqrt {k^{2} x}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (k^{2} \textit {\_Z}^{2}+k \textit {\_Z} +1\right )}{\sum }\frac {\EllipticPi \left (\sqrt {-k^{2} x +1}, \frac {\underline {\hspace {1.25 ex}}\alpha \,k^{2}+k +1}{k^{2}+k +1}, \sqrt {-\frac {1}{k^{2}-1}}\right )}{2 \underline {\hspace {1.25 ex}}\alpha k +1}\right )}{3 \left (k^{2}+k +1\right ) \sqrt {x \left (k^{2} x^{2}-k^{2} x -x +1\right )}}-\frac {8 \sqrt {-k^{2} x +1}\, \sqrt {-\frac {\left (-1+x \right ) k^{2}}{k^{2}-1}}\, \sqrt {k^{2} x}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (k^{2} \textit {\_Z}^{2}+k \textit {\_Z} +1\right )}{\sum }\frac {\EllipticPi \left (\sqrt {-k^{2} x +1}, \frac {\underline {\hspace {1.25 ex}}\alpha \,k^{2}+k +1}{k^{2}+k +1}, \sqrt {-\frac {1}{k^{2}-1}}\right )}{2 \underline {\hspace {1.25 ex}}\alpha k +1}\right )}{3 k \left (k^{2}+k +1\right ) \sqrt {x \left (k^{2} x^{2}-k^{2} x -x +1\right )}}\) \(872\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((k^3*x^3+1)/((1-x)*x*(-k^2*x+1))^(1/2)/(k^3*x^3-1),x,method=_RETURNVERBOSE)

[Out]

-2/k^2*(-(x-1/k^2)*k^2)^(1/2)*((-1+x)/(1/k^2-1))^(1/2)*(k^2*x)^(1/2)/(k^2*x^3-k^2*x^2-x^2+x)^(1/2)*EllipticF((
-(x-1/k^2)*k^2)^(1/2),(1/k^2/(1/k^2-1))^(1/2))-4/3/k^3*(-(x-1/k^2)*k^2)^(1/2)*((-1+x)/(1/k^2-1))^(1/2)*(k^2*x)
^(1/2)/(k^2*x^3-k^2*x^2-x^2+x)^(1/2)/(1/k^2-1/k)*EllipticPi((-(x-1/k^2)*k^2)^(1/2),1/k^2/(1/k^2-1/k),(1/k^2/(1
/k^2-1))^(1/2))-4/3/k*sum((-_alpha*k-2)/(2*_alpha*k+1)*(_alpha*k^2+k+1)/(k^2+k+1)*(-(x-1/k^2)*k^2)^(1/2)*((-1+
x)/(1/k^2-1))^(1/2)*(k^2*x)^(1/2)/(x*(k^2*x^2-k^2*x-x+1))^(1/2)*EllipticPi((-(x-1/k^2)*k^2)^(1/2),(_alpha*k^2+
k+1)/(k^2+k+1),(1/k^2/(1/k^2-1))^(1/2)),_alpha=RootOf(_Z^2*k^2+_Z*k+1))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {k^{3} x^{3} + 1}{{\left (k^{3} x^{3} - 1\right )} \sqrt {{\left (k^{2} x - 1\right )} {\left (x - 1\right )} x}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((k^3*x^3+1)/((1-x)*x*(-k^2*x+1))^(1/2)/(k^3*x^3-1),x, algorithm="maxima")

[Out]

integrate((k^3*x^3 + 1)/((k^3*x^3 - 1)*sqrt((k^2*x - 1)*(x - 1)*x)), x)

________________________________________________________________________________________

mupad [F(-1)]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \text {Hanged} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((k^3*x^3 + 1)/((k^3*x^3 - 1)*(x*(k^2*x - 1)*(x - 1))^(1/2)),x)

[Out]

\text{Hanged}

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((k**3*x**3+1)/((1-x)*x*(-k**2*x+1))**(1/2)/(k**3*x**3-1),x)

[Out]

Timed out

________________________________________________________________________________________