3.16.43 \(\int \frac {1}{\sqrt [3]{b^2 x^2+a^3 x^3} (b+a^6 x^6)} \, dx\)

Optimal. Leaf size=106 \[ -\frac {\text {RootSum}\left [\text {$\#$1}^{18}-6 \text {$\#$1}^{15} a^3+15 \text {$\#$1}^{12} a^6-20 \text {$\#$1}^9 a^9+15 \text {$\#$1}^6 a^{12}-6 \text {$\#$1}^3 a^{15}+a^{18}+a^6 b^{11}\& ,\frac {\log \left (\sqrt [3]{a^3 x^3+b^2 x^2}-\text {$\#$1} x\right )-\log (x)}{\text {$\#$1}}\& \right ]}{6 b} \]

________________________________________________________________________________________

Rubi [B]  time = 4.21, antiderivative size = 2271, normalized size of antiderivative = 21.42, number of steps used = 13, number of rules used = 3, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {2056, 6725, 91}

result too large to display

Warning: Unable to verify antiderivative.

[In]

Int[1/((b^2*x^2 + a^3*x^3)^(1/3)*(b + a^6*x^6)),x]

[Out]

(x^(2/3)*(b^2 + a^3*x)^(1/3)*ArcTan[1/Sqrt[3] + (2*(-b)^(1/18)*(b^2 + a^3*x)^(1/3))/(Sqrt[3]*a^(1/3)*(a^2*(-b)
^(1/6) - b^2)^(1/3)*x^(1/3))])/(2*Sqrt[3]*a^(1/3)*(-b)^(17/18)*(a^2*(-b)^(1/6) - b^2)^(1/3)*(b^2*x^2 + a^3*x^3
)^(1/3)) + (x^(2/3)*(b^2 + a^3*x)^(1/3)*ArcTan[1/Sqrt[3] + (2*(-b)^(1/18)*(b^2 + a^3*x)^(1/3))/(Sqrt[3]*a^(1/3
)*(a^2*(-b)^(1/6) + b^2)^(1/3)*x^(1/3))])/(2*Sqrt[3]*a^(1/3)*(-b)^(17/18)*(a^2*(-b)^(1/6) + b^2)^(1/3)*(b^2*x^
2 + a^3*x^3)^(1/3)) + (x^(2/3)*(b^2 + a^3*x)^(1/3)*ArcTan[1/Sqrt[3] + (2*(-b)^(1/18)*(b^2 + a^3*x)^(1/3))/(Sqr
t[3]*a^(1/3)*(a^2*(-b)^(1/6) - (-1)^(1/3)*b^2)^(1/3)*x^(1/3))])/(2*Sqrt[3]*a^(1/3)*(-b)^(17/18)*(a^2*(-b)^(1/6
) - (-1)^(1/3)*b^2)^(1/3)*(b^2*x^2 + a^3*x^3)^(1/3)) + (x^(2/3)*(b^2 + a^3*x)^(1/3)*ArcTan[1/Sqrt[3] + (2*(-b)
^(1/18)*(b^2 + a^3*x)^(1/3))/(Sqrt[3]*a^(1/3)*(a^2*(-b)^(1/6) + (-1)^(1/3)*b^2)^(1/3)*x^(1/3))])/(2*Sqrt[3]*a^
(1/3)*(-b)^(17/18)*(a^2*(-b)^(1/6) + (-1)^(1/3)*b^2)^(1/3)*(b^2*x^2 + a^3*x^3)^(1/3)) + (x^(2/3)*(b^2 + a^3*x)
^(1/3)*ArcTan[1/Sqrt[3] + (2*(-b)^(1/18)*(b^2 + a^3*x)^(1/3))/(Sqrt[3]*a^(1/3)*(a^2*(-b)^(1/6) - (-1)^(2/3)*b^
2)^(1/3)*x^(1/3))])/(2*Sqrt[3]*a^(1/3)*(-b)^(17/18)*(a^2*(-b)^(1/6) - (-1)^(2/3)*b^2)^(1/3)*(b^2*x^2 + a^3*x^3
)^(1/3)) + (x^(2/3)*(b^2 + a^3*x)^(1/3)*ArcTan[1/Sqrt[3] + (2*(-b)^(1/18)*(b^2 + a^3*x)^(1/3))/(Sqrt[3]*a^(1/3
)*(a^2*(-b)^(1/6) + (-1)^(2/3)*b^2)^(1/3)*x^(1/3))])/(2*Sqrt[3]*a^(1/3)*(-b)^(17/18)*(a^2*(-b)^(1/6) + (-1)^(2
/3)*b^2)^(1/3)*(b^2*x^2 + a^3*x^3)^(1/3)) - (x^(2/3)*(b^2 + a^3*x)^(1/3)*Log[-(-b)^(1/6) - a*x])/(12*a^(1/3)*(
-b)^(17/18)*(a^2*(-b)^(1/6) - b^2)^(1/3)*(b^2*x^2 + a^3*x^3)^(1/3)) - (x^(2/3)*(b^2 + a^3*x)^(1/3)*Log[(-b)^(1
/6) - a*x])/(12*a^(1/3)*(-b)^(17/18)*(a^2*(-b)^(1/6) + b^2)^(1/3)*(b^2*x^2 + a^3*x^3)^(1/3)) - (x^(2/3)*(b^2 +
 a^3*x)^(1/3)*Log[-(-b)^(1/6) + (-1)^(1/3)*a*x])/(12*a^(1/3)*(-b)^(17/18)*(a^2*(-b)^(1/6) + (-1)^(1/3)*b^2)^(1
/3)*(b^2*x^2 + a^3*x^3)^(1/3)) - (x^(2/3)*(b^2 + a^3*x)^(1/3)*Log[(-b)^(1/6) + (-1)^(1/3)*a*x])/(12*a^(1/3)*(-
b)^(17/18)*(a^2*(-b)^(1/6) - (-1)^(1/3)*b^2)^(1/3)*(b^2*x^2 + a^3*x^3)^(1/3)) - (x^(2/3)*(b^2 + a^3*x)^(1/3)*L
og[-(-b)^(1/6) - (-1)^(2/3)*a*x])/(12*a^(1/3)*(-b)^(17/18)*(a^2*(-b)^(1/6) - (-1)^(2/3)*b^2)^(1/3)*(b^2*x^2 +
a^3*x^3)^(1/3)) - (x^(2/3)*(b^2 + a^3*x)^(1/3)*Log[(-b)^(1/6) - (-1)^(2/3)*a*x])/(12*a^(1/3)*(-b)^(17/18)*(a^2
*(-b)^(1/6) + (-1)^(2/3)*b^2)^(1/3)*(b^2*x^2 + a^3*x^3)^(1/3)) + (x^(2/3)*(b^2 + a^3*x)^(1/3)*Log[-x^(1/3) + (
(-b)^(1/18)*(b^2 + a^3*x)^(1/3))/(a^(1/3)*(a^2*(-b)^(1/6) - b^2)^(1/3))])/(4*a^(1/3)*(-b)^(17/18)*(a^2*(-b)^(1
/6) - b^2)^(1/3)*(b^2*x^2 + a^3*x^3)^(1/3)) + (x^(2/3)*(b^2 + a^3*x)^(1/3)*Log[-x^(1/3) + ((-b)^(1/18)*(b^2 +
a^3*x)^(1/3))/(a^(1/3)*(a^2*(-b)^(1/6) + b^2)^(1/3))])/(4*a^(1/3)*(-b)^(17/18)*(a^2*(-b)^(1/6) + b^2)^(1/3)*(b
^2*x^2 + a^3*x^3)^(1/3)) + (x^(2/3)*(b^2 + a^3*x)^(1/3)*Log[-x^(1/3) + ((-b)^(1/18)*(b^2 + a^3*x)^(1/3))/(a^(1
/3)*(a^2*(-b)^(1/6) - (-1)^(1/3)*b^2)^(1/3))])/(4*a^(1/3)*(-b)^(17/18)*(a^2*(-b)^(1/6) - (-1)^(1/3)*b^2)^(1/3)
*(b^2*x^2 + a^3*x^3)^(1/3)) + (x^(2/3)*(b^2 + a^3*x)^(1/3)*Log[-x^(1/3) + ((-b)^(1/18)*(b^2 + a^3*x)^(1/3))/(a
^(1/3)*(a^2*(-b)^(1/6) + (-1)^(1/3)*b^2)^(1/3))])/(4*a^(1/3)*(-b)^(17/18)*(a^2*(-b)^(1/6) + (-1)^(1/3)*b^2)^(1
/3)*(b^2*x^2 + a^3*x^3)^(1/3)) + (x^(2/3)*(b^2 + a^3*x)^(1/3)*Log[-x^(1/3) + ((-b)^(1/18)*(b^2 + a^3*x)^(1/3))
/(a^(1/3)*(a^2*(-b)^(1/6) - (-1)^(2/3)*b^2)^(1/3))])/(4*a^(1/3)*(-b)^(17/18)*(a^2*(-b)^(1/6) - (-1)^(2/3)*b^2)
^(1/3)*(b^2*x^2 + a^3*x^3)^(1/3)) + (x^(2/3)*(b^2 + a^3*x)^(1/3)*Log[-x^(1/3) + ((-b)^(1/18)*(b^2 + a^3*x)^(1/
3))/(a^(1/3)*(a^2*(-b)^(1/6) + (-1)^(2/3)*b^2)^(1/3))])/(4*a^(1/3)*(-b)^(17/18)*(a^2*(-b)^(1/6) + (-1)^(2/3)*b
^2)^(1/3)*(b^2*x^2 + a^3*x^3)^(1/3))

Rule 91

Int[1/(((a_.) + (b_.)*(x_))^(1/3)*((c_.) + (d_.)*(x_))^(2/3)*((e_.) + (f_.)*(x_))), x_Symbol] :> With[{q = Rt[
(d*e - c*f)/(b*e - a*f), 3]}, -Simp[(Sqrt[3]*q*ArcTan[1/Sqrt[3] + (2*q*(a + b*x)^(1/3))/(Sqrt[3]*(c + d*x)^(1/
3))])/(d*e - c*f), x] + (Simp[(q*Log[e + f*x])/(2*(d*e - c*f)), x] - Simp[(3*q*Log[q*(a + b*x)^(1/3) - (c + d*
x)^(1/3)])/(2*(d*e - c*f)), x])] /; FreeQ[{a, b, c, d, e, f}, x]

Rule 2056

Int[(u_.)*(P_)^(p_.), x_Symbol] :> With[{m = MinimumMonomialExponent[P, x]}, Dist[P^FracPart[p]/(x^(m*FracPart
[p])*Distrib[1/x^m, P]^FracPart[p]), Int[u*x^(m*p)*Distrib[1/x^m, P]^p, x], x]] /; FreeQ[p, x] &&  !IntegerQ[p
] && SumQ[P] && EveryQ[BinomialQ[#1, x] & , P] &&  !PolyQ[P, x, 2]

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt [3]{b^2 x^2+a^3 x^3} \left (b+a^6 x^6\right )} \, dx &=\frac {\left (x^{2/3} \sqrt [3]{b^2+a^3 x}\right ) \int \frac {1}{x^{2/3} \sqrt [3]{b^2+a^3 x} \left (b+a^6 x^6\right )} \, dx}{\sqrt [3]{b^2 x^2+a^3 x^3}}\\ &=\frac {\left (x^{2/3} \sqrt [3]{b^2+a^3 x}\right ) \int \left (\frac {\sqrt {-b}}{2 b x^{2/3} \sqrt [3]{b^2+a^3 x} \left (\sqrt {-b}-a^3 x^3\right )}+\frac {\sqrt {-b}}{2 b x^{2/3} \sqrt [3]{b^2+a^3 x} \left (\sqrt {-b}+a^3 x^3\right )}\right ) \, dx}{\sqrt [3]{b^2 x^2+a^3 x^3}}\\ &=-\frac {\left (x^{2/3} \sqrt [3]{b^2+a^3 x}\right ) \int \frac {1}{x^{2/3} \sqrt [3]{b^2+a^3 x} \left (\sqrt {-b}-a^3 x^3\right )} \, dx}{2 \sqrt {-b} \sqrt [3]{b^2 x^2+a^3 x^3}}-\frac {\left (x^{2/3} \sqrt [3]{b^2+a^3 x}\right ) \int \frac {1}{x^{2/3} \sqrt [3]{b^2+a^3 x} \left (\sqrt {-b}+a^3 x^3\right )} \, dx}{2 \sqrt {-b} \sqrt [3]{b^2 x^2+a^3 x^3}}\\ &=-\frac {\left (x^{2/3} \sqrt [3]{b^2+a^3 x}\right ) \int \left (-\frac {1}{3 \sqrt [3]{-b} x^{2/3} \left (-\sqrt [6]{-b}-a x\right ) \sqrt [3]{b^2+a^3 x}}-\frac {1}{3 \sqrt [3]{-b} x^{2/3} \left (-\sqrt [6]{-b}+\sqrt [3]{-1} a x\right ) \sqrt [3]{b^2+a^3 x}}-\frac {1}{3 \sqrt [3]{-b} x^{2/3} \left (-\sqrt [6]{-b}-(-1)^{2/3} a x\right ) \sqrt [3]{b^2+a^3 x}}\right ) \, dx}{2 \sqrt {-b} \sqrt [3]{b^2 x^2+a^3 x^3}}-\frac {\left (x^{2/3} \sqrt [3]{b^2+a^3 x}\right ) \int \left (\frac {1}{3 \sqrt [3]{-b} x^{2/3} \left (\sqrt [6]{-b}-a x\right ) \sqrt [3]{b^2+a^3 x}}+\frac {1}{3 \sqrt [3]{-b} x^{2/3} \left (\sqrt [6]{-b}+\sqrt [3]{-1} a x\right ) \sqrt [3]{b^2+a^3 x}}+\frac {1}{3 \sqrt [3]{-b} x^{2/3} \left (\sqrt [6]{-b}-(-1)^{2/3} a x\right ) \sqrt [3]{b^2+a^3 x}}\right ) \, dx}{2 \sqrt {-b} \sqrt [3]{b^2 x^2+a^3 x^3}}\\ &=\frac {\left (x^{2/3} \sqrt [3]{b^2+a^3 x}\right ) \int \frac {1}{x^{2/3} \left (-\sqrt [6]{-b}-a x\right ) \sqrt [3]{b^2+a^3 x}} \, dx}{6 (-b)^{5/6} \sqrt [3]{b^2 x^2+a^3 x^3}}-\frac {\left (x^{2/3} \sqrt [3]{b^2+a^3 x}\right ) \int \frac {1}{x^{2/3} \left (\sqrt [6]{-b}-a x\right ) \sqrt [3]{b^2+a^3 x}} \, dx}{6 (-b)^{5/6} \sqrt [3]{b^2 x^2+a^3 x^3}}+\frac {\left (x^{2/3} \sqrt [3]{b^2+a^3 x}\right ) \int \frac {1}{x^{2/3} \left (-\sqrt [6]{-b}+\sqrt [3]{-1} a x\right ) \sqrt [3]{b^2+a^3 x}} \, dx}{6 (-b)^{5/6} \sqrt [3]{b^2 x^2+a^3 x^3}}-\frac {\left (x^{2/3} \sqrt [3]{b^2+a^3 x}\right ) \int \frac {1}{x^{2/3} \left (\sqrt [6]{-b}+\sqrt [3]{-1} a x\right ) \sqrt [3]{b^2+a^3 x}} \, dx}{6 (-b)^{5/6} \sqrt [3]{b^2 x^2+a^3 x^3}}+\frac {\left (x^{2/3} \sqrt [3]{b^2+a^3 x}\right ) \int \frac {1}{x^{2/3} \left (-\sqrt [6]{-b}-(-1)^{2/3} a x\right ) \sqrt [3]{b^2+a^3 x}} \, dx}{6 (-b)^{5/6} \sqrt [3]{b^2 x^2+a^3 x^3}}-\frac {\left (x^{2/3} \sqrt [3]{b^2+a^3 x}\right ) \int \frac {1}{x^{2/3} \left (\sqrt [6]{-b}-(-1)^{2/3} a x\right ) \sqrt [3]{b^2+a^3 x}} \, dx}{6 (-b)^{5/6} \sqrt [3]{b^2 x^2+a^3 x^3}}\\ &=\frac {x^{2/3} \sqrt [3]{b^2+a^3 x} \tan ^{-1}\left (\frac {1}{\sqrt {3}}+\frac {2 \sqrt [18]{-b} \sqrt [3]{b^2+a^3 x}}{\sqrt {3} \sqrt [3]{a} \sqrt [3]{a^2 \sqrt [6]{-b}-b^2} \sqrt [3]{x}}\right )}{2 \sqrt {3} \sqrt [3]{a} (-b)^{17/18} \sqrt [3]{a^2 \sqrt [6]{-b}-b^2} \sqrt [3]{b^2 x^2+a^3 x^3}}+\frac {x^{2/3} \sqrt [3]{b^2+a^3 x} \tan ^{-1}\left (\frac {1}{\sqrt {3}}+\frac {2 \sqrt [18]{-b} \sqrt [3]{b^2+a^3 x}}{\sqrt {3} \sqrt [3]{a} \sqrt [3]{a^2 \sqrt [6]{-b}+b^2} \sqrt [3]{x}}\right )}{2 \sqrt {3} \sqrt [3]{a} (-b)^{17/18} \sqrt [3]{a^2 \sqrt [6]{-b}+b^2} \sqrt [3]{b^2 x^2+a^3 x^3}}+\frac {x^{2/3} \sqrt [3]{b^2+a^3 x} \tan ^{-1}\left (\frac {1}{\sqrt {3}}+\frac {2 \sqrt [18]{-b} \sqrt [3]{b^2+a^3 x}}{\sqrt {3} \sqrt [3]{a} \sqrt [3]{a^2 \sqrt [6]{-b}-\sqrt [3]{-1} b^2} \sqrt [3]{x}}\right )}{2 \sqrt {3} \sqrt [3]{a} (-b)^{17/18} \sqrt [3]{a^2 \sqrt [6]{-b}-\sqrt [3]{-1} b^2} \sqrt [3]{b^2 x^2+a^3 x^3}}+\frac {x^{2/3} \sqrt [3]{b^2+a^3 x} \tan ^{-1}\left (\frac {1}{\sqrt {3}}+\frac {2 \sqrt [18]{-b} \sqrt [3]{b^2+a^3 x}}{\sqrt {3} \sqrt [3]{a} \sqrt [3]{a^2 \sqrt [6]{-b}+\sqrt [3]{-1} b^2} \sqrt [3]{x}}\right )}{2 \sqrt {3} \sqrt [3]{a} (-b)^{17/18} \sqrt [3]{a^2 \sqrt [6]{-b}+\sqrt [3]{-1} b^2} \sqrt [3]{b^2 x^2+a^3 x^3}}+\frac {x^{2/3} \sqrt [3]{b^2+a^3 x} \tan ^{-1}\left (\frac {1}{\sqrt {3}}+\frac {2 \sqrt [18]{-b} \sqrt [3]{b^2+a^3 x}}{\sqrt {3} \sqrt [3]{a} \sqrt [3]{a^2 \sqrt [6]{-b}-(-1)^{2/3} b^2} \sqrt [3]{x}}\right )}{2 \sqrt {3} \sqrt [3]{a} (-b)^{17/18} \sqrt [3]{a^2 \sqrt [6]{-b}-(-1)^{2/3} b^2} \sqrt [3]{b^2 x^2+a^3 x^3}}+\frac {x^{2/3} \sqrt [3]{b^2+a^3 x} \tan ^{-1}\left (\frac {1}{\sqrt {3}}+\frac {2 \sqrt [18]{-b} \sqrt [3]{b^2+a^3 x}}{\sqrt {3} \sqrt [3]{a} \sqrt [3]{a^2 \sqrt [6]{-b}+(-1)^{2/3} b^2} \sqrt [3]{x}}\right )}{2 \sqrt {3} \sqrt [3]{a} (-b)^{17/18} \sqrt [3]{a^2 \sqrt [6]{-b}+(-1)^{2/3} b^2} \sqrt [3]{b^2 x^2+a^3 x^3}}-\frac {x^{2/3} \sqrt [3]{b^2+a^3 x} \log \left (-\sqrt [6]{-b}-a x\right )}{12 \sqrt [3]{a} (-b)^{17/18} \sqrt [3]{a^2 \sqrt [6]{-b}-b^2} \sqrt [3]{b^2 x^2+a^3 x^3}}-\frac {x^{2/3} \sqrt [3]{b^2+a^3 x} \log \left (\sqrt [6]{-b}-a x\right )}{12 \sqrt [3]{a} (-b)^{17/18} \sqrt [3]{a^2 \sqrt [6]{-b}+b^2} \sqrt [3]{b^2 x^2+a^3 x^3}}-\frac {x^{2/3} \sqrt [3]{b^2+a^3 x} \log \left (-\sqrt [6]{-b}+\sqrt [3]{-1} a x\right )}{12 \sqrt [3]{a} (-b)^{17/18} \sqrt [3]{a^2 \sqrt [6]{-b}+\sqrt [3]{-1} b^2} \sqrt [3]{b^2 x^2+a^3 x^3}}-\frac {x^{2/3} \sqrt [3]{b^2+a^3 x} \log \left (\sqrt [6]{-b}+\sqrt [3]{-1} a x\right )}{12 \sqrt [3]{a} (-b)^{17/18} \sqrt [3]{a^2 \sqrt [6]{-b}-\sqrt [3]{-1} b^2} \sqrt [3]{b^2 x^2+a^3 x^3}}-\frac {x^{2/3} \sqrt [3]{b^2+a^3 x} \log \left (-\sqrt [6]{-b}-(-1)^{2/3} a x\right )}{12 \sqrt [3]{a} (-b)^{17/18} \sqrt [3]{a^2 \sqrt [6]{-b}-(-1)^{2/3} b^2} \sqrt [3]{b^2 x^2+a^3 x^3}}-\frac {x^{2/3} \sqrt [3]{b^2+a^3 x} \log \left (\sqrt [6]{-b}-(-1)^{2/3} a x\right )}{12 \sqrt [3]{a} (-b)^{17/18} \sqrt [3]{a^2 \sqrt [6]{-b}+(-1)^{2/3} b^2} \sqrt [3]{b^2 x^2+a^3 x^3}}+\frac {x^{2/3} \sqrt [3]{b^2+a^3 x} \log \left (-\sqrt [3]{x}+\frac {\sqrt [18]{-b} \sqrt [3]{b^2+a^3 x}}{\sqrt [3]{a} \sqrt [3]{a^2 \sqrt [6]{-b}-b^2}}\right )}{4 \sqrt [3]{a} (-b)^{17/18} \sqrt [3]{a^2 \sqrt [6]{-b}-b^2} \sqrt [3]{b^2 x^2+a^3 x^3}}+\frac {x^{2/3} \sqrt [3]{b^2+a^3 x} \log \left (-\sqrt [3]{x}+\frac {\sqrt [18]{-b} \sqrt [3]{b^2+a^3 x}}{\sqrt [3]{a} \sqrt [3]{a^2 \sqrt [6]{-b}+b^2}}\right )}{4 \sqrt [3]{a} (-b)^{17/18} \sqrt [3]{a^2 \sqrt [6]{-b}+b^2} \sqrt [3]{b^2 x^2+a^3 x^3}}+\frac {x^{2/3} \sqrt [3]{b^2+a^3 x} \log \left (-\sqrt [3]{x}+\frac {\sqrt [18]{-b} \sqrt [3]{b^2+a^3 x}}{\sqrt [3]{a} \sqrt [3]{a^2 \sqrt [6]{-b}-\sqrt [3]{-1} b^2}}\right )}{4 \sqrt [3]{a} (-b)^{17/18} \sqrt [3]{a^2 \sqrt [6]{-b}-\sqrt [3]{-1} b^2} \sqrt [3]{b^2 x^2+a^3 x^3}}+\frac {x^{2/3} \sqrt [3]{b^2+a^3 x} \log \left (-\sqrt [3]{x}+\frac {\sqrt [18]{-b} \sqrt [3]{b^2+a^3 x}}{\sqrt [3]{a} \sqrt [3]{a^2 \sqrt [6]{-b}+\sqrt [3]{-1} b^2}}\right )}{4 \sqrt [3]{a} (-b)^{17/18} \sqrt [3]{a^2 \sqrt [6]{-b}+\sqrt [3]{-1} b^2} \sqrt [3]{b^2 x^2+a^3 x^3}}+\frac {x^{2/3} \sqrt [3]{b^2+a^3 x} \log \left (-\sqrt [3]{x}+\frac {\sqrt [18]{-b} \sqrt [3]{b^2+a^3 x}}{\sqrt [3]{a} \sqrt [3]{a^2 \sqrt [6]{-b}-(-1)^{2/3} b^2}}\right )}{4 \sqrt [3]{a} (-b)^{17/18} \sqrt [3]{a^2 \sqrt [6]{-b}-(-1)^{2/3} b^2} \sqrt [3]{b^2 x^2+a^3 x^3}}+\frac {x^{2/3} \sqrt [3]{b^2+a^3 x} \log \left (-\sqrt [3]{x}+\frac {\sqrt [18]{-b} \sqrt [3]{b^2+a^3 x}}{\sqrt [3]{a} \sqrt [3]{a^2 \sqrt [6]{-b}+(-1)^{2/3} b^2}}\right )}{4 \sqrt [3]{a} (-b)^{17/18} \sqrt [3]{a^2 \sqrt [6]{-b}+(-1)^{2/3} b^2} \sqrt [3]{b^2 x^2+a^3 x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.13, size = 252, normalized size = 2.38 \begin {gather*} \frac {x \left (\, _2F_1\left (\frac {1}{3},1;\frac {4}{3};\frac {a \left (a^2+(-b)^{11/6}\right ) x}{x a^3+b^2}\right )+\, _2F_1\left (\frac {1}{3},1;\frac {4}{3};\frac {a \left (a^2+\sqrt [3]{-1} (-b)^{11/6}\right ) x}{x a^3+b^2}\right )+\, _2F_1\left (\frac {1}{3},1;\frac {4}{3};\frac {a \left (a^2+(-1)^{2/3} (-b)^{11/6}\right ) x}{x a^3+b^2}\right )+\, _2F_1\left (\frac {1}{3},1;\frac {4}{3};\frac {a \left (a^2+(-b)^{5/6} b\right ) x}{x a^3+b^2}\right )+\, _2F_1\left (\frac {1}{3},1;\frac {4}{3};\frac {a \left (a^2+\sqrt [3]{-1} (-b)^{5/6} b\right ) x}{x a^3+b^2}\right )+\, _2F_1\left (\frac {1}{3},1;\frac {4}{3};\frac {a \left (a^2+(-1)^{2/3} (-b)^{5/6} b\right ) x}{x a^3+b^2}\right )\right )}{2 b \sqrt [3]{x^2 \left (a^3 x+b^2\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((b^2*x^2 + a^3*x^3)^(1/3)*(b + a^6*x^6)),x]

[Out]

(x*(Hypergeometric2F1[1/3, 1, 4/3, (a*(a^2 + (-b)^(11/6))*x)/(b^2 + a^3*x)] + Hypergeometric2F1[1/3, 1, 4/3, (
a*(a^2 + (-1)^(1/3)*(-b)^(11/6))*x)/(b^2 + a^3*x)] + Hypergeometric2F1[1/3, 1, 4/3, (a*(a^2 + (-1)^(2/3)*(-b)^
(11/6))*x)/(b^2 + a^3*x)] + Hypergeometric2F1[1/3, 1, 4/3, (a*(a^2 + (-b)^(5/6)*b)*x)/(b^2 + a^3*x)] + Hyperge
ometric2F1[1/3, 1, 4/3, (a*(a^2 + (-1)^(1/3)*(-b)^(5/6)*b)*x)/(b^2 + a^3*x)] + Hypergeometric2F1[1/3, 1, 4/3,
(a*(a^2 + (-1)^(2/3)*(-b)^(5/6)*b)*x)/(b^2 + a^3*x)]))/(2*b*(x^2*(b^2 + a^3*x))^(1/3))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.00, size = 106, normalized size = 1.00 \begin {gather*} -\frac {\text {RootSum}\left [a^{18}+a^6 b^{11}-6 a^{15} \text {$\#$1}^3+15 a^{12} \text {$\#$1}^6-20 a^9 \text {$\#$1}^9+15 a^6 \text {$\#$1}^{12}-6 a^3 \text {$\#$1}^{15}+\text {$\#$1}^{18}\&,\frac {-\log (x)+\log \left (\sqrt [3]{b^2 x^2+a^3 x^3}-x \text {$\#$1}\right )}{\text {$\#$1}}\&\right ]}{6 b} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/((b^2*x^2 + a^3*x^3)^(1/3)*(b + a^6*x^6)),x]

[Out]

-1/6*RootSum[a^18 + a^6*b^11 - 6*a^15*#1^3 + 15*a^12*#1^6 - 20*a^9*#1^9 + 15*a^6*#1^12 - 6*a^3*#1^15 + #1^18 &
 , (-Log[x] + Log[(b^2*x^2 + a^3*x^3)^(1/3) - x*#1])/#1 & ]/b

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a^3*x^3+b^2*x^2)^(1/3)/(a^6*x^6+b),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{{\left (a^{6} x^{6} + b\right )} {\left (a^{3} x^{3} + b^{2} x^{2}\right )}^{\frac {1}{3}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a^3*x^3+b^2*x^2)^(1/3)/(a^6*x^6+b),x, algorithm="giac")

[Out]

integrate(1/((a^6*x^6 + b)*(a^3*x^3 + b^2*x^2)^(1/3)), x)

________________________________________________________________________________________

maple [F]  time = 0.00, size = 0, normalized size = 0.00 \[\int \frac {1}{\left (a^{3} x^{3}+b^{2} x^{2}\right )^{\frac {1}{3}} \left (a^{6} x^{6}+b \right )}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a^3*x^3+b^2*x^2)^(1/3)/(a^6*x^6+b),x)

[Out]

int(1/(a^3*x^3+b^2*x^2)^(1/3)/(a^6*x^6+b),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{{\left (a^{6} x^{6} + b\right )} {\left (a^{3} x^{3} + b^{2} x^{2}\right )}^{\frac {1}{3}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a^3*x^3+b^2*x^2)^(1/3)/(a^6*x^6+b),x, algorithm="maxima")

[Out]

integrate(1/((a^6*x^6 + b)*(a^3*x^3 + b^2*x^2)^(1/3)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\left (a^3\,x^3+b^2\,x^2\right )}^{1/3}\,\left (a^6\,x^6+b\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a^3*x^3 + b^2*x^2)^(1/3)*(b + a^6*x^6)),x)

[Out]

int(1/((a^3*x^3 + b^2*x^2)^(1/3)*(b + a^6*x^6)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt [3]{x^{2} \left (a^{3} x + b^{2}\right )} \left (a^{6} x^{6} + b\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a**3*x**3+b**2*x**2)**(1/3)/(a**6*x**6+b),x)

[Out]

Integral(1/((x**2*(a**3*x + b**2))**(1/3)*(a**6*x**6 + b)), x)

________________________________________________________________________________________