3.22.19 \(\int \frac {(-b+a x^2) \sqrt {-b x+a x^3}}{x^2 (b+a x^2)} \, dx\)

Optimal. Leaf size=154 \[ -\sqrt [4]{a} \sqrt [4]{b} \tanh ^{-1}\left (\frac {\frac {a^{3/4} x^2}{2 \sqrt [4]{b}}-\frac {b^{3/4}}{2 \sqrt [4]{a}}+\sqrt [4]{a} \sqrt [4]{b} x}{\sqrt {a x^3-b x}}\right )+\frac {2 \sqrt {a x^3-b x}}{x}+\sqrt [4]{a} \sqrt [4]{b} \tan ^{-1}\left (\frac {2 \sqrt [4]{a} \sqrt [4]{b} \sqrt {a x^3-b x}}{-2 \sqrt {a} \sqrt {b} x+a x^2-b}\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.75, antiderivative size = 195, normalized size of antiderivative = 1.27, number of steps used = 15, number of rules used = 11, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.306, Rules used = {2056, 466, 474, 12, 490, 1211, 224, 221, 1699, 208, 205} \begin {gather*} \frac {2 \sqrt {a x^3-b x}}{x}+\frac {\sqrt {2} \sqrt [4]{-a} \sqrt [4]{b} \sqrt {a x^3-b x} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{-a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a x^2-b}}\right )}{\sqrt {x} \sqrt {a x^2-b}}-\frac {\sqrt {2} \sqrt [4]{-a} \sqrt [4]{b} \sqrt {a x^3-b x} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{-a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a x^2-b}}\right )}{\sqrt {x} \sqrt {a x^2-b}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((-b + a*x^2)*Sqrt[-(b*x) + a*x^3])/(x^2*(b + a*x^2)),x]

[Out]

(2*Sqrt[-(b*x) + a*x^3])/x + (Sqrt[2]*(-a)^(1/4)*b^(1/4)*Sqrt[-(b*x) + a*x^3]*ArcTan[(Sqrt[2]*(-a)^(1/4)*b^(1/
4)*Sqrt[x])/Sqrt[-b + a*x^2]])/(Sqrt[x]*Sqrt[-b + a*x^2]) - (Sqrt[2]*(-a)^(1/4)*b^(1/4)*Sqrt[-(b*x) + a*x^3]*A
rcTanh[(Sqrt[2]*(-a)^(1/4)*b^(1/4)*Sqrt[x])/Sqrt[-b + a*x^2]])/(Sqrt[x]*Sqrt[-b + a*x^2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[(Rt[-b, 4]*x)/Rt[a, 4]], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Dist[Sqrt[1 + (b*x^4)/a]/Sqrt[a + b*x^4], Int[1/Sqrt[1 + (b*x^4)
/a], x], x] /; FreeQ[{a, b}, x] && NegQ[b/a] &&  !GtQ[a, 0]

Rule 466

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> With[{k = Deno
minator[m]}, Dist[k/e, Subst[Int[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/e^n)^p*(c + (d*x^(k*n))/e^n)^q, x], x, (e*
x)^(1/k)], x]] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && FractionQ[m] && Intege
rQ[p]

Rule 474

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(c*(e*x)^
(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1))/(a*e*(m + 1)), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)
*(a + b*x^n)^p*(c + d*x^n)^(q - 2)*Simp[c*(c*b - a*d)*(m + 1) + c*n*(b*c*(p + 1) + a*d*(q - 1)) + d*((c*b - a*
d)*(m + 1) + c*b*n*(p + q))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0]
 && GtQ[q, 1] && LtQ[m, -1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 490

Int[(x_)^2/(((a_) + (b_.)*(x_)^4)*Sqrt[(c_) + (d_.)*(x_)^4]), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]],
 s = Denominator[Rt[-(a/b), 2]]}, Dist[s/(2*b), Int[1/((r + s*x^2)*Sqrt[c + d*x^4]), x], x] - Dist[s/(2*b), In
t[1/((r - s*x^2)*Sqrt[c + d*x^4]), x], x]] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 1211

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Dist[1/(2*d), Int[1/Sqrt[a + c*x^4], x],
 x] + Dist[1/(2*d), Int[(d - e*x^2)/((d + e*x^2)*Sqrt[a + c*x^4]), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d
^2 + a*e^2, 0] && EqQ[c*d^2 - a*e^2, 0]

Rule 1699

Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Dist[A, Subst[Int[1/
(d + 2*a*e*x^2), x], x, x/Sqrt[a + c*x^4]], x] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ
[c*d^2 - a*e^2, 0] && EqQ[B*d + A*e, 0]

Rule 2056

Int[(u_.)*(P_)^(p_.), x_Symbol] :> With[{m = MinimumMonomialExponent[P, x]}, Dist[P^FracPart[p]/(x^(m*FracPart
[p])*Distrib[1/x^m, P]^FracPart[p]), Int[u*x^(m*p)*Distrib[1/x^m, P]^p, x], x]] /; FreeQ[p, x] &&  !IntegerQ[p
] && SumQ[P] && EveryQ[BinomialQ[#1, x] & , P] &&  !PolyQ[P, x, 2]

Rubi steps

\begin {align*} \int \frac {\left (-b+a x^2\right ) \sqrt {-b x+a x^3}}{x^2 \left (b+a x^2\right )} \, dx &=\frac {\sqrt {-b x+a x^3} \int \frac {\left (-b+a x^2\right )^{3/2}}{x^{3/2} \left (b+a x^2\right )} \, dx}{\sqrt {x} \sqrt {-b+a x^2}}\\ &=\frac {\left (2 \sqrt {-b x+a x^3}\right ) \operatorname {Subst}\left (\int \frac {\left (-b+a x^4\right )^{3/2}}{x^2 \left (b+a x^4\right )} \, dx,x,\sqrt {x}\right )}{\sqrt {x} \sqrt {-b+a x^2}}\\ &=\frac {2 \sqrt {-b x+a x^3}}{x}+\frac {\left (2 \sqrt {-b x+a x^3}\right ) \operatorname {Subst}\left (\int -\frac {4 a b^2 x^2}{\sqrt {-b+a x^4} \left (b+a x^4\right )} \, dx,x,\sqrt {x}\right )}{b \sqrt {x} \sqrt {-b+a x^2}}\\ &=\frac {2 \sqrt {-b x+a x^3}}{x}-\frac {\left (8 a b \sqrt {-b x+a x^3}\right ) \operatorname {Subst}\left (\int \frac {x^2}{\sqrt {-b+a x^4} \left (b+a x^4\right )} \, dx,x,\sqrt {x}\right )}{\sqrt {x} \sqrt {-b+a x^2}}\\ &=\frac {2 \sqrt {-b x+a x^3}}{x}-\frac {\left (4 a b \sqrt {-b x+a x^3}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (\sqrt {b}-\sqrt {-a} x^2\right ) \sqrt {-b+a x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt {-a} \sqrt {x} \sqrt {-b+a x^2}}+\frac {\left (4 a b \sqrt {-b x+a x^3}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (\sqrt {b}+\sqrt {-a} x^2\right ) \sqrt {-b+a x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt {-a} \sqrt {x} \sqrt {-b+a x^2}}\\ &=\frac {2 \sqrt {-b x+a x^3}}{x}+\frac {\left (2 a \sqrt {b} \sqrt {-b x+a x^3}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {b}-\sqrt {-a} x^2}{\left (\sqrt {b}+\sqrt {-a} x^2\right ) \sqrt {-b+a x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt {-a} \sqrt {x} \sqrt {-b+a x^2}}-\frac {\left (2 a \sqrt {b} \sqrt {-b x+a x^3}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {b}+\sqrt {-a} x^2}{\left (\sqrt {b}-\sqrt {-a} x^2\right ) \sqrt {-b+a x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt {-a} \sqrt {x} \sqrt {-b+a x^2}}\\ &=\frac {2 \sqrt {-b x+a x^3}}{x}+\frac {\left (2 a b \sqrt {-b x+a x^3}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {b}-2 \sqrt {-a} b x^2} \, dx,x,\frac {\sqrt {x}}{\sqrt {-b+a x^2}}\right )}{\sqrt {-a} \sqrt {x} \sqrt {-b+a x^2}}-\frac {\left (2 a b \sqrt {-b x+a x^3}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {b}+2 \sqrt {-a} b x^2} \, dx,x,\frac {\sqrt {x}}{\sqrt {-b+a x^2}}\right )}{\sqrt {-a} \sqrt {x} \sqrt {-b+a x^2}}\\ &=\frac {2 \sqrt {-b x+a x^3}}{x}+\frac {\sqrt {2} \sqrt [4]{-a} \sqrt [4]{b} \sqrt {-b x+a x^3} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{-a} \sqrt [4]{b} \sqrt {x}}{\sqrt {-b+a x^2}}\right )}{\sqrt {x} \sqrt {-b+a x^2}}-\frac {\sqrt {2} \sqrt [4]{-a} \sqrt [4]{b} \sqrt {-b x+a x^3} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{-a} \sqrt [4]{b} \sqrt {x}}{\sqrt {-b+a x^2}}\right )}{\sqrt {x} \sqrt {-b+a x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.06, size = 88, normalized size = 0.57 \begin {gather*} -\frac {2 \sqrt {a x^3-b x} \left (4 a x^2 \sqrt {1-\frac {a x^2}{b}} F_1\left (\frac {3}{4};\frac {1}{2},1;\frac {7}{4};\frac {a x^2}{b},-\frac {a x^2}{b}\right )-3 a x^2+3 b\right )}{3 a x^3-3 b x} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[((-b + a*x^2)*Sqrt[-(b*x) + a*x^3])/(x^2*(b + a*x^2)),x]

[Out]

(-2*Sqrt[-(b*x) + a*x^3]*(3*b - 3*a*x^2 + 4*a*x^2*Sqrt[1 - (a*x^2)/b]*AppellF1[3/4, 1/2, 1, 7/4, (a*x^2)/b, -(
(a*x^2)/b)]))/(-3*b*x + 3*a*x^3)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.46, size = 165, normalized size = 1.07 \begin {gather*} \frac {2 \sqrt {-b x+a x^3}}{x}-\sqrt [4]{a} \sqrt [4]{b} \tan ^{-1}\left (\frac {-\frac {b^{3/4}}{2 \sqrt [4]{a}}-\sqrt [4]{a} \sqrt [4]{b} x+\frac {a^{3/4} x^2}{2 \sqrt [4]{b}}}{\sqrt {-b x+a x^3}}\right )-\sqrt [4]{a} \sqrt [4]{b} \tanh ^{-1}\left (\frac {-\frac {b^{3/4}}{2 \sqrt [4]{a}}+\sqrt [4]{a} \sqrt [4]{b} x+\frac {a^{3/4} x^2}{2 \sqrt [4]{b}}}{\sqrt {-b x+a x^3}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[((-b + a*x^2)*Sqrt[-(b*x) + a*x^3])/(x^2*(b + a*x^2)),x]

[Out]

(2*Sqrt[-(b*x) + a*x^3])/x - a^(1/4)*b^(1/4)*ArcTan[(-1/2*b^(3/4)/a^(1/4) - a^(1/4)*b^(1/4)*x + (a^(3/4)*x^2)/
(2*b^(1/4)))/Sqrt[-(b*x) + a*x^3]] - a^(1/4)*b^(1/4)*ArcTanh[(-1/2*b^(3/4)/a^(1/4) + a^(1/4)*b^(1/4)*x + (a^(3
/4)*x^2)/(2*b^(1/4)))/Sqrt[-(b*x) + a*x^3]]

________________________________________________________________________________________

fricas [B]  time = 74.45, size = 1180, normalized size = 7.66

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^2-b)*(a*x^3-b*x)^(1/2)/x^2/(a*x^2+b),x, algorithm="fricas")

[Out]

-1/4*(4*4^(1/4)*(-a*b)^(1/4)*x*arctan(-1/4*(8*sqrt(a*x^3 - b*x)*(4^(3/4)*(4*a^4*b + 9*a^3*b^2 + 6*a^2*b^3 + a*
b^4)*(-a*b)^(3/4)*x - 4^(1/4)*(4*a^4*b^2 + 9*a^3*b^3 + 6*a^2*b^4 + a*b^5 - (4*a^5*b + 9*a^4*b^2 + 6*a^3*b^3 +
a^2*b^4)*x^2)*(-a*b)^(1/4)) + sqrt(-160*a^4*b + 352*a^3*b^2 - 64*a^2*b^3 + 8*(4*a^4 - 41*a^3*b + 26*a^2*b^2 -
a*b^3)*sqrt(-a*b))*(4^(3/4)*((a^3 - 2*a^2*b)*x^4 + 2*(5*a^2*b - a*b^2)*x^3 + a*b^2 - 2*b^3 - 6*(a^2*b - 2*a*b^
2)*x^2 - 2*(5*a*b^2 - b^3)*x)*(-a*b)^(3/4) + 4^(1/4)*((5*a^3*b - a^2*b^2)*x^4 + 5*a*b^3 - b^4 - 8*(a^3*b - 2*a
^2*b^2)*x^3 - 6*(5*a^2*b^2 - a*b^3)*x^2 + 8*(a^2*b^2 - 2*a*b^3)*x)*(-a*b)^(1/4)))/(4*a^4*b^3 + 9*a^3*b^4 + 6*a
^2*b^5 + a*b^6 + (4*a^6*b + 9*a^5*b^2 + 6*a^4*b^3 + a^3*b^4)*x^4 + 2*(4*a^5*b^2 + 9*a^4*b^3 + 6*a^3*b^4 + a^2*
b^5)*x^2)) + 4^(1/4)*(-a*b)^(1/4)*x*log((4^(3/4)*((5*a^3 - a^2*b)*x^4 - 8*(a^3 - 2*a^2*b)*x^3 + 5*a*b^2 - b^3
- 6*(5*a^2*b - a*b^2)*x^2 + 8*(a^2*b - 2*a*b^2)*x)*(-a*b)^(3/4) + 8*(5*a^2*b^2 - a*b^3 - (5*a^3*b - a^2*b^2)*x
^2 + 4*(a^3*b - 2*a^2*b^2)*x + 2*(a^2*b - 2*a*b^2 - (a^3 - 2*a^2*b)*x^2 - (5*a^2*b - a*b^2)*x)*sqrt(-a*b))*sqr
t(a*x^3 - b*x) - 4*4^(1/4)*((a^4 - 2*a^3*b)*x^4 + a^2*b^2 - 2*a*b^3 + 2*(5*a^3*b - a^2*b^2)*x^3 - 6*(a^3*b - 2
*a^2*b^2)*x^2 - 2*(5*a^2*b^2 - a*b^3)*x)*(-a*b)^(1/4))/(a^2*x^4 + 2*a*b*x^2 + b^2)) - 4^(1/4)*(-a*b)^(1/4)*x*l
og(-(4^(3/4)*((5*a^3 - a^2*b)*x^4 - 8*(a^3 - 2*a^2*b)*x^3 + 5*a*b^2 - b^3 - 6*(5*a^2*b - a*b^2)*x^2 + 8*(a^2*b
 - 2*a*b^2)*x)*(-a*b)^(3/4) - 8*(5*a^2*b^2 - a*b^3 - (5*a^3*b - a^2*b^2)*x^2 + 4*(a^3*b - 2*a^2*b^2)*x + 2*(a^
2*b - 2*a*b^2 - (a^3 - 2*a^2*b)*x^2 - (5*a^2*b - a*b^2)*x)*sqrt(-a*b))*sqrt(a*x^3 - b*x) - 4*4^(1/4)*((a^4 - 2
*a^3*b)*x^4 + a^2*b^2 - 2*a*b^3 + 2*(5*a^3*b - a^2*b^2)*x^3 - 6*(a^3*b - 2*a^2*b^2)*x^2 - 2*(5*a^2*b^2 - a*b^3
)*x)*(-a*b)^(1/4))/(a^2*x^4 + 2*a*b*x^2 + b^2)) - 8*sqrt(a*x^3 - b*x))/x

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {a x^{3} - b x} {\left (a x^{2} - b\right )}}{{\left (a x^{2} + b\right )} x^{2}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^2-b)*(a*x^3-b*x)^(1/2)/x^2/(a*x^2+b),x, algorithm="giac")

[Out]

integrate(sqrt(a*x^3 - b*x)*(a*x^2 - b)/((a*x^2 + b)*x^2), x)

________________________________________________________________________________________

maple [C]  time = 0.20, size = 310, normalized size = 2.01

method result size
elliptic \(\frac {2 a \,x^{2}-2 b}{\sqrt {x \left (a \,x^{2}-b \right )}}-\frac {2 b \sqrt {a b}\, \sqrt {\frac {x a}{\sqrt {a b}}+1}\, \sqrt {-\frac {2 x a}{\sqrt {a b}}+2}\, \sqrt {-\frac {x a}{\sqrt {a b}}}\, \EllipticPi \left (\sqrt {\frac {\left (x +\frac {\sqrt {a b}}{a}\right ) a}{\sqrt {a b}}}, -\frac {\sqrt {a b}}{a \left (-\frac {\sqrt {-a b}}{a}-\frac {\sqrt {a b}}{a}\right )}, \frac {\sqrt {2}}{2}\right )}{a \sqrt {a \,x^{3}-b x}\, \left (-\frac {\sqrt {-a b}}{a}-\frac {\sqrt {a b}}{a}\right )}-\frac {2 b \sqrt {a b}\, \sqrt {\frac {x a}{\sqrt {a b}}+1}\, \sqrt {-\frac {2 x a}{\sqrt {a b}}+2}\, \sqrt {-\frac {x a}{\sqrt {a b}}}\, \EllipticPi \left (\sqrt {\frac {\left (x +\frac {\sqrt {a b}}{a}\right ) a}{\sqrt {a b}}}, -\frac {\sqrt {a b}}{a \left (-\frac {\sqrt {a b}}{a}+\frac {\sqrt {-a b}}{a}\right )}, \frac {\sqrt {2}}{2}\right )}{a \sqrt {a \,x^{3}-b x}\, \left (-\frac {\sqrt {a b}}{a}+\frac {\sqrt {-a b}}{a}\right )}\) \(310\)
risch \(\frac {2 a \,x^{2}-2 b}{\sqrt {x \left (a \,x^{2}-b \right )}}-4 b a \left (\frac {\sqrt {a b}\, \sqrt {\frac {x a}{\sqrt {a b}}+1}\, \sqrt {-\frac {2 x a}{\sqrt {a b}}+2}\, \sqrt {-\frac {x a}{\sqrt {a b}}}\, \EllipticPi \left (\sqrt {\frac {\left (x +\frac {\sqrt {a b}}{a}\right ) a}{\sqrt {a b}}}, -\frac {\sqrt {a b}}{a \left (-\frac {\sqrt {-a b}}{a}-\frac {\sqrt {a b}}{a}\right )}, \frac {\sqrt {2}}{2}\right )}{2 a^{2} \sqrt {a \,x^{3}-b x}\, \left (-\frac {\sqrt {-a b}}{a}-\frac {\sqrt {a b}}{a}\right )}+\frac {\sqrt {a b}\, \sqrt {\frac {x a}{\sqrt {a b}}+1}\, \sqrt {-\frac {2 x a}{\sqrt {a b}}+2}\, \sqrt {-\frac {x a}{\sqrt {a b}}}\, \EllipticPi \left (\sqrt {\frac {\left (x +\frac {\sqrt {a b}}{a}\right ) a}{\sqrt {a b}}}, -\frac {\sqrt {a b}}{a \left (-\frac {\sqrt {a b}}{a}+\frac {\sqrt {-a b}}{a}\right )}, \frac {\sqrt {2}}{2}\right )}{2 a^{2} \sqrt {a \,x^{3}-b x}\, \left (-\frac {\sqrt {a b}}{a}+\frac {\sqrt {-a b}}{a}\right )}\right )\) \(313\)
default \(2 a \left (-\frac {2 b \sqrt {\frac {x a}{\sqrt {a b}}+1}\, \sqrt {-\frac {2 x a}{\sqrt {a b}}+2}\, \sqrt {-\frac {x a}{\sqrt {a b}}}\, \EllipticE \left (\sqrt {\frac {\left (x +\frac {\sqrt {a b}}{a}\right ) a}{\sqrt {a b}}}, \frac {\sqrt {2}}{2}\right )}{a \sqrt {a \,x^{3}-b x}}+\frac {b \sqrt {\frac {x a}{\sqrt {a b}}+1}\, \sqrt {-\frac {2 x a}{\sqrt {a b}}+2}\, \sqrt {-\frac {x a}{\sqrt {a b}}}\, \EllipticF \left (\sqrt {\frac {\left (x +\frac {\sqrt {a b}}{a}\right ) a}{\sqrt {a b}}}, \frac {\sqrt {2}}{2}\right )}{a \sqrt {a \,x^{3}-b x}}-\frac {b \sqrt {a b}\, \sqrt {\frac {x a}{\sqrt {a b}}+1}\, \sqrt {-\frac {2 x a}{\sqrt {a b}}+2}\, \sqrt {-\frac {x a}{\sqrt {a b}}}\, \EllipticPi \left (\sqrt {\frac {\left (x +\frac {\sqrt {a b}}{a}\right ) a}{\sqrt {a b}}}, -\frac {\sqrt {a b}}{a \left (-\frac {\sqrt {-a b}}{a}-\frac {\sqrt {a b}}{a}\right )}, \frac {\sqrt {2}}{2}\right )}{a^{2} \sqrt {a \,x^{3}-b x}\, \left (-\frac {\sqrt {-a b}}{a}-\frac {\sqrt {a b}}{a}\right )}-\frac {b \sqrt {a b}\, \sqrt {\frac {x a}{\sqrt {a b}}+1}\, \sqrt {-\frac {2 x a}{\sqrt {a b}}+2}\, \sqrt {-\frac {x a}{\sqrt {a b}}}\, \EllipticPi \left (\sqrt {\frac {\left (x +\frac {\sqrt {a b}}{a}\right ) a}{\sqrt {a b}}}, -\frac {\sqrt {a b}}{a \left (-\frac {\sqrt {a b}}{a}+\frac {\sqrt {-a b}}{a}\right )}, \frac {\sqrt {2}}{2}\right )}{a^{2} \sqrt {a \,x^{3}-b x}\, \left (-\frac {\sqrt {a b}}{a}+\frac {\sqrt {-a b}}{a}\right )}\right )+\frac {2 a \,x^{2}-2 b}{\sqrt {x \left (a \,x^{2}-b \right )}}-\frac {2 \sqrt {a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {a b}}{a}\right ) a}{\sqrt {a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {a b}}{a}\right ) a}{\sqrt {a b}}}\, \sqrt {-\frac {x a}{\sqrt {a b}}}\, \left (-\frac {2 \sqrt {a b}\, \EllipticE \left (\sqrt {\frac {\left (x +\frac {\sqrt {a b}}{a}\right ) a}{\sqrt {a b}}}, \frac {\sqrt {2}}{2}\right )}{a}+\frac {\sqrt {a b}\, \EllipticF \left (\sqrt {\frac {\left (x +\frac {\sqrt {a b}}{a}\right ) a}{\sqrt {a b}}}, \frac {\sqrt {2}}{2}\right )}{a}\right )}{\sqrt {a \,x^{3}-b x}}\) \(617\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x^2-b)*(a*x^3-b*x)^(1/2)/x^2/(a*x^2+b),x,method=_RETURNVERBOSE)

[Out]

2*(a*x^2-b)/(x*(a*x^2-b))^(1/2)-2*b/a*(a*b)^(1/2)*(x*a/(a*b)^(1/2)+1)^(1/2)*(-2*x*a/(a*b)^(1/2)+2)^(1/2)*(-x*a
/(a*b)^(1/2))^(1/2)/(a*x^3-b*x)^(1/2)/(-1/a*(-a*b)^(1/2)-1/a*(a*b)^(1/2))*EllipticPi(((x+1/a*(a*b)^(1/2))*a/(a
*b)^(1/2))^(1/2),-1/a*(a*b)^(1/2)/(-1/a*(-a*b)^(1/2)-1/a*(a*b)^(1/2)),1/2*2^(1/2))-2*b/a*(a*b)^(1/2)*(x*a/(a*b
)^(1/2)+1)^(1/2)*(-2*x*a/(a*b)^(1/2)+2)^(1/2)*(-x*a/(a*b)^(1/2))^(1/2)/(a*x^3-b*x)^(1/2)/(-1/a*(a*b)^(1/2)+1/a
*(-a*b)^(1/2))*EllipticPi(((x+1/a*(a*b)^(1/2))*a/(a*b)^(1/2))^(1/2),-1/a*(a*b)^(1/2)/(-1/a*(a*b)^(1/2)+1/a*(-a
*b)^(1/2)),1/2*2^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {a x^{3} - b x} {\left (a x^{2} - b\right )}}{{\left (a x^{2} + b\right )} x^{2}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^2-b)*(a*x^3-b*x)^(1/2)/x^2/(a*x^2+b),x, algorithm="maxima")

[Out]

integrate(sqrt(a*x^3 - b*x)*(a*x^2 - b)/((a*x^2 + b)*x^2), x)

________________________________________________________________________________________

mupad [F(-1)]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \text {Hanged} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-((a*x^3 - b*x)^(1/2)*(b - a*x^2))/(x^2*(b + a*x^2)),x)

[Out]

\text{Hanged}

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {x \left (a x^{2} - b\right )} \left (a x^{2} - b\right )}{x^{2} \left (a x^{2} + b\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x**2-b)*(a*x**3-b*x)**(1/2)/x**2/(a*x**2+b),x)

[Out]

Integral(sqrt(x*(a*x**2 - b))*(a*x**2 - b)/(x**2*(a*x**2 + b)), x)

________________________________________________________________________________________