3.22.79 \(\int \frac {\sqrt {1+x} (-1+x^4) \sqrt {1+\sqrt {1+x}}}{1+x^4} \, dx\)

Optimal. Leaf size=161 \[ -\frac {1}{2} \text {RootSum}\left [\text {$\#$1}^{16}-8 \text {$\#$1}^{14}+24 \text {$\#$1}^{12}-32 \text {$\#$1}^{10}+16 \text {$\#$1}^8+1\& ,\frac {\text {$\#$1}^2 \log \left (\sqrt {\sqrt {x+1}+1}-\text {$\#$1}\right )-\log \left (\sqrt {\sqrt {x+1}+1}-\text {$\#$1}\right )}{\text {$\#$1}^{11}-6 \text {$\#$1}^9+12 \text {$\#$1}^7-8 \text {$\#$1}^5}\& \right ]+\frac {4}{105} \sqrt {\sqrt {x+1}+1} (3 x+11)+\frac {4}{105} \sqrt {x+1} (15 x+11) \sqrt {\sqrt {x+1}+1} \]

________________________________________________________________________________________

Rubi [F]  time = 1.03, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\sqrt {1+x} \left (-1+x^4\right ) \sqrt {1+\sqrt {1+x}}}{1+x^4} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(Sqrt[1 + x]*(-1 + x^4)*Sqrt[1 + Sqrt[1 + x]])/(1 + x^4),x]

[Out]

(4*(1 + Sqrt[1 + x])^(3/2))/3 - (8*(1 + Sqrt[1 + x])^(5/2))/5 + (4*(1 + Sqrt[1 + x])^(7/2))/7 - 8*Defer[Subst]
[Defer[Int][x^2/(1 + 16*x^8 - 32*x^10 + 24*x^12 - 8*x^14 + x^16), x], x, Sqrt[1 + Sqrt[1 + x]]] + 16*Defer[Sub
st][Defer[Int][x^4/(1 + 16*x^8 - 32*x^10 + 24*x^12 - 8*x^14 + x^16), x], x, Sqrt[1 + Sqrt[1 + x]]] - 8*Defer[S
ubst][Defer[Int][x^6/(1 + 16*x^8 - 32*x^10 + 24*x^12 - 8*x^14 + x^16), x], x, Sqrt[1 + Sqrt[1 + x]]]

Rubi steps

\begin {align*} \int \frac {\sqrt {1+x} \left (-1+x^4\right ) \sqrt {1+\sqrt {1+x}}}{1+x^4} \, dx &=2 \operatorname {Subst}\left (\int \frac {x^2 \sqrt {1+x} \left (-1+\left (-1+x^2\right )^4\right )}{1+\left (-1+x^2\right )^4} \, dx,x,\sqrt {1+x}\right )\\ &=4 \operatorname {Subst}\left (\int \frac {x^2 \left (-1+x^2\right )^2 \left (-1+x^8 \left (-2+x^2\right )^4\right )}{1+x^8 \left (-2+x^2\right )^4} \, dx,x,\sqrt {1+\sqrt {1+x}}\right )\\ &=4 \operatorname {Subst}\left (\int \left (x^2-2 x^4+x^6-\frac {2 x^2 \left (1-2 x^2+x^4\right )}{1+x^8 \left (-2+x^2\right )^4}\right ) \, dx,x,\sqrt {1+\sqrt {1+x}}\right )\\ &=\frac {4}{3} \left (1+\sqrt {1+x}\right )^{3/2}-\frac {8}{5} \left (1+\sqrt {1+x}\right )^{5/2}+\frac {4}{7} \left (1+\sqrt {1+x}\right )^{7/2}-8 \operatorname {Subst}\left (\int \frac {x^2 \left (1-2 x^2+x^4\right )}{1+x^8 \left (-2+x^2\right )^4} \, dx,x,\sqrt {1+\sqrt {1+x}}\right )\\ &=\frac {4}{3} \left (1+\sqrt {1+x}\right )^{3/2}-\frac {8}{5} \left (1+\sqrt {1+x}\right )^{5/2}+\frac {4}{7} \left (1+\sqrt {1+x}\right )^{7/2}-8 \operatorname {Subst}\left (\int \frac {x^2 \left (-1+x^2\right )^2}{1+x^8 \left (-2+x^2\right )^4} \, dx,x,\sqrt {1+\sqrt {1+x}}\right )\\ &=\frac {4}{3} \left (1+\sqrt {1+x}\right )^{3/2}-\frac {8}{5} \left (1+\sqrt {1+x}\right )^{5/2}+\frac {4}{7} \left (1+\sqrt {1+x}\right )^{7/2}-8 \operatorname {Subst}\left (\int \left (\frac {x^2}{1+16 x^8-32 x^{10}+24 x^{12}-8 x^{14}+x^{16}}-\frac {2 x^4}{1+16 x^8-32 x^{10}+24 x^{12}-8 x^{14}+x^{16}}+\frac {x^6}{1+16 x^8-32 x^{10}+24 x^{12}-8 x^{14}+x^{16}}\right ) \, dx,x,\sqrt {1+\sqrt {1+x}}\right )\\ &=\frac {4}{3} \left (1+\sqrt {1+x}\right )^{3/2}-\frac {8}{5} \left (1+\sqrt {1+x}\right )^{5/2}+\frac {4}{7} \left (1+\sqrt {1+x}\right )^{7/2}-8 \operatorname {Subst}\left (\int \frac {x^2}{1+16 x^8-32 x^{10}+24 x^{12}-8 x^{14}+x^{16}} \, dx,x,\sqrt {1+\sqrt {1+x}}\right )-8 \operatorname {Subst}\left (\int \frac {x^6}{1+16 x^8-32 x^{10}+24 x^{12}-8 x^{14}+x^{16}} \, dx,x,\sqrt {1+\sqrt {1+x}}\right )+16 \operatorname {Subst}\left (\int \frac {x^4}{1+16 x^8-32 x^{10}+24 x^{12}-8 x^{14}+x^{16}} \, dx,x,\sqrt {1+\sqrt {1+x}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.26, size = 153, normalized size = 0.95 \begin {gather*} \frac {4}{105} \sqrt {\sqrt {x+1}+1} \left (11 \left (\sqrt {x+1}+1\right )+3 x \left (5 \sqrt {x+1}+1\right )\right )-\frac {1}{2} \text {RootSum}\left [\text {$\#$1}^{16}-8 \text {$\#$1}^{14}+24 \text {$\#$1}^{12}-32 \text {$\#$1}^{10}+16 \text {$\#$1}^8+1\&,\frac {\text {$\#$1}^2 \log \left (\sqrt {\sqrt {x+1}+1}-\text {$\#$1}\right )-\log \left (\sqrt {\sqrt {x+1}+1}-\text {$\#$1}\right )}{\text {$\#$1}^{11}-6 \text {$\#$1}^9+12 \text {$\#$1}^7-8 \text {$\#$1}^5}\&\right ] \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[1 + x]*(-1 + x^4)*Sqrt[1 + Sqrt[1 + x]])/(1 + x^4),x]

[Out]

(4*Sqrt[1 + Sqrt[1 + x]]*(11*(1 + Sqrt[1 + x]) + 3*x*(1 + 5*Sqrt[1 + x])))/105 - RootSum[1 + 16*#1^8 - 32*#1^1
0 + 24*#1^12 - 8*#1^14 + #1^16 & , (-Log[Sqrt[1 + Sqrt[1 + x]] - #1] + Log[Sqrt[1 + Sqrt[1 + x]] - #1]*#1^2)/(
-8*#1^5 + 12*#1^7 - 6*#1^9 + #1^11) & ]/2

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.00, size = 152, normalized size = 0.94 \begin {gather*} \frac {4}{105} \sqrt {1+\sqrt {1+x}} \left (8-4 \sqrt {1+x}+3 (1+x)+15 (1+x)^{3/2}\right )-\frac {1}{2} \text {RootSum}\left [1+16 \text {$\#$1}^8-32 \text {$\#$1}^{10}+24 \text {$\#$1}^{12}-8 \text {$\#$1}^{14}+\text {$\#$1}^{16}\&,\frac {-\log \left (\sqrt {1+\sqrt {1+x}}-\text {$\#$1}\right )+\log \left (\sqrt {1+\sqrt {1+x}}-\text {$\#$1}\right ) \text {$\#$1}^2}{-8 \text {$\#$1}^5+12 \text {$\#$1}^7-6 \text {$\#$1}^9+\text {$\#$1}^{11}}\&\right ] \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(Sqrt[1 + x]*(-1 + x^4)*Sqrt[1 + Sqrt[1 + x]])/(1 + x^4),x]

[Out]

(4*Sqrt[1 + Sqrt[1 + x]]*(8 - 4*Sqrt[1 + x] + 3*(1 + x) + 15*(1 + x)^(3/2)))/105 - RootSum[1 + 16*#1^8 - 32*#1
^10 + 24*#1^12 - 8*#1^14 + #1^16 & , (-Log[Sqrt[1 + Sqrt[1 + x]] - #1] + Log[Sqrt[1 + Sqrt[1 + x]] - #1]*#1^2)
/(-8*#1^5 + 12*#1^7 - 6*#1^9 + #1^11) & ]/2

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(1/2)*(x^4-1)*(1+(1+x)^(1/2))^(1/2)/(x^4+1),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {sage}_{0} x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(1/2)*(x^4-1)*(1+(1+x)^(1/2))^(1/2)/(x^4+1),x, algorithm="giac")

[Out]

sage0*x

________________________________________________________________________________________

maple [B]  time = 0.10, size = 119, normalized size = 0.74

method result size
derivativedivides \(\frac {4 \left (1+\sqrt {1+x}\right )^{\frac {7}{2}}}{7}-\frac {8 \left (1+\sqrt {1+x}\right )^{\frac {5}{2}}}{5}+\frac {4 \left (1+\sqrt {1+x}\right )^{\frac {3}{2}}}{3}-\frac {\left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{16}-8 \textit {\_Z}^{14}+24 \textit {\_Z}^{12}-32 \textit {\_Z}^{10}+16 \textit {\_Z}^{8}+1\right )}{\sum }\frac {\left (\textit {\_R}^{6}-2 \textit {\_R}^{4}+\textit {\_R}^{2}\right ) \ln \left (\sqrt {1+\sqrt {1+x}}-\textit {\_R} \right )}{\textit {\_R}^{15}-7 \textit {\_R}^{13}+18 \textit {\_R}^{11}-20 \textit {\_R}^{9}+8 \textit {\_R}^{7}}\right )}{2}\) \(119\)
default \(\frac {4 \left (1+\sqrt {1+x}\right )^{\frac {7}{2}}}{7}-\frac {8 \left (1+\sqrt {1+x}\right )^{\frac {5}{2}}}{5}+\frac {4 \left (1+\sqrt {1+x}\right )^{\frac {3}{2}}}{3}-\frac {\left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{16}-8 \textit {\_Z}^{14}+24 \textit {\_Z}^{12}-32 \textit {\_Z}^{10}+16 \textit {\_Z}^{8}+1\right )}{\sum }\frac {\left (\textit {\_R}^{6}-2 \textit {\_R}^{4}+\textit {\_R}^{2}\right ) \ln \left (\sqrt {1+\sqrt {1+x}}-\textit {\_R} \right )}{\textit {\_R}^{15}-7 \textit {\_R}^{13}+18 \textit {\_R}^{11}-20 \textit {\_R}^{9}+8 \textit {\_R}^{7}}\right )}{2}\) \(119\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+x)^(1/2)*(x^4-1)*(1+(1+x)^(1/2))^(1/2)/(x^4+1),x,method=_RETURNVERBOSE)

[Out]

4/7*(1+(1+x)^(1/2))^(7/2)-8/5*(1+(1+x)^(1/2))^(5/2)+4/3*(1+(1+x)^(1/2))^(3/2)-1/2*sum((_R^6-2*_R^4+_R^2)/(_R^1
5-7*_R^13+18*_R^11-20*_R^9+8*_R^7)*ln((1+(1+x)^(1/2))^(1/2)-_R),_R=RootOf(_Z^16-8*_Z^14+24*_Z^12-32*_Z^10+16*_
Z^8+1))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{4} - 1\right )} \sqrt {x + 1} \sqrt {\sqrt {x + 1} + 1}}{x^{4} + 1}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(1/2)*(x^4-1)*(1+(1+x)^(1/2))^(1/2)/(x^4+1),x, algorithm="maxima")

[Out]

integrate((x^4 - 1)*sqrt(x + 1)*sqrt(sqrt(x + 1) + 1)/(x^4 + 1), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\left (x^4-1\right )\,\sqrt {\sqrt {x+1}+1}\,\sqrt {x+1}}{x^4+1} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((x^4 - 1)*((x + 1)^(1/2) + 1)^(1/2)*(x + 1)^(1/2))/(x^4 + 1),x)

[Out]

int(((x^4 - 1)*((x + 1)^(1/2) + 1)^(1/2)*(x + 1)^(1/2))/(x^4 + 1), x)

________________________________________________________________________________________

sympy [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SympifyError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)**(1/2)*(x**4-1)*(1+(1+x)**(1/2))**(1/2)/(x**4+1),x)

[Out]

Exception raised: SympifyError

________________________________________________________________________________________