3.5.3 \(\int \frac {1}{\sqrt [4]{1+x^4}} \, dx\)

Optimal. Leaf size=33 \[ \frac {1}{2} \tan ^{-1}\left (\frac {x}{\sqrt [4]{x^4+1}}\right )+\frac {1}{2} \tanh ^{-1}\left (\frac {x}{\sqrt [4]{x^4+1}}\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 33, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.444, Rules used = {240, 212, 206, 203} \begin {gather*} \frac {1}{2} \tan ^{-1}\left (\frac {x}{\sqrt [4]{x^4+1}}\right )+\frac {1}{2} \tanh ^{-1}\left (\frac {x}{\sqrt [4]{x^4+1}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(1 + x^4)^(-1/4),x]

[Out]

ArcTan[x/(1 + x^4)^(1/4)]/2 + ArcTanh[x/(1 + x^4)^(1/4)]/2

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 240

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + 1/n), Subst[Int[1/(1 - b*x^n)^(p + 1/n + 1), x], x
, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[p
 + 1/n]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt [4]{1+x^4}} \, dx &=\operatorname {Subst}\left (\int \frac {1}{1-x^4} \, dx,x,\frac {x}{\sqrt [4]{1+x^4}}\right )\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\frac {x}{\sqrt [4]{1+x^4}}\right )+\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\frac {x}{\sqrt [4]{1+x^4}}\right )\\ &=\frac {1}{2} \tan ^{-1}\left (\frac {x}{\sqrt [4]{1+x^4}}\right )+\frac {1}{2} \tanh ^{-1}\left (\frac {x}{\sqrt [4]{1+x^4}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 54, normalized size = 1.64 \begin {gather*} -\frac {1}{4} \log \left (1-\frac {x}{\sqrt [4]{x^4+1}}\right )+\frac {1}{4} \log \left (\frac {x}{\sqrt [4]{x^4+1}}+1\right )+\frac {1}{2} \tan ^{-1}\left (\frac {x}{\sqrt [4]{x^4+1}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(1 + x^4)^(-1/4),x]

[Out]

ArcTan[x/(1 + x^4)^(1/4)]/2 - Log[1 - x/(1 + x^4)^(1/4)]/4 + Log[1 + x/(1 + x^4)^(1/4)]/4

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.15, size = 33, normalized size = 1.00 \begin {gather*} \frac {1}{2} \tan ^{-1}\left (\frac {x}{\sqrt [4]{1+x^4}}\right )+\frac {1}{2} \tanh ^{-1}\left (\frac {x}{\sqrt [4]{1+x^4}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(1 + x^4)^(-1/4),x]

[Out]

ArcTan[x/(1 + x^4)^(1/4)]/2 + ArcTanh[x/(1 + x^4)^(1/4)]/2

________________________________________________________________________________________

fricas [A]  time = 0.47, size = 50, normalized size = 1.52 \begin {gather*} -\frac {1}{2} \, \arctan \left (\frac {{\left (x^{4} + 1\right )}^{\frac {1}{4}}}{x}\right ) + \frac {1}{4} \, \log \left (\frac {x + {\left (x^{4} + 1\right )}^{\frac {1}{4}}}{x}\right ) - \frac {1}{4} \, \log \left (-\frac {x - {\left (x^{4} + 1\right )}^{\frac {1}{4}}}{x}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^4+1)^(1/4),x, algorithm="fricas")

[Out]

-1/2*arctan((x^4 + 1)^(1/4)/x) + 1/4*log((x + (x^4 + 1)^(1/4))/x) - 1/4*log(-(x - (x^4 + 1)^(1/4))/x)

________________________________________________________________________________________

giac [A]  time = 0.35, size = 47, normalized size = 1.42 \begin {gather*} -\frac {1}{2} \, \arctan \left (\frac {{\left (x^{4} + 1\right )}^{\frac {1}{4}}}{x}\right ) + \frac {1}{4} \, \log \left (\frac {{\left (x^{4} + 1\right )}^{\frac {1}{4}}}{x} + 1\right ) - \frac {1}{4} \, \log \left (\frac {{\left (x^{4} + 1\right )}^{\frac {1}{4}}}{x} - 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^4+1)^(1/4),x, algorithm="giac")

[Out]

-1/2*arctan((x^4 + 1)^(1/4)/x) + 1/4*log((x^4 + 1)^(1/4)/x + 1) - 1/4*log((x^4 + 1)^(1/4)/x - 1)

________________________________________________________________________________________

maple [C]  time = 2.25, size = 14, normalized size = 0.42

method result size
meijerg \(\hypergeom \left (\left [\frac {1}{4}, \frac {1}{4}\right ], \left [\frac {5}{4}\right ], -x^{4}\right ) x\) \(14\)
trager \(-\frac {\ln \left (2 \left (x^{4}+1\right )^{\frac {3}{4}} x -2 x^{2} \sqrt {x^{4}+1}+2 x^{3} \left (x^{4}+1\right )^{\frac {1}{4}}-2 x^{4}-1\right )}{4}+\frac {\RootOf \left (\textit {\_Z}^{2}+1\right ) \ln \left (-2 \RootOf \left (\textit {\_Z}^{2}+1\right ) \sqrt {x^{4}+1}\, x^{2}+2 \RootOf \left (\textit {\_Z}^{2}+1\right ) x^{4}+2 \left (x^{4}+1\right )^{\frac {3}{4}} x -2 x^{3} \left (x^{4}+1\right )^{\frac {1}{4}}+\RootOf \left (\textit {\_Z}^{2}+1\right )\right )}{4}\) \(113\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^4+1)^(1/4),x,method=_RETURNVERBOSE)

[Out]

hypergeom([1/4,1/4],[5/4],-x^4)*x

________________________________________________________________________________________

maxima [A]  time = 0.59, size = 47, normalized size = 1.42 \begin {gather*} -\frac {1}{2} \, \arctan \left (\frac {{\left (x^{4} + 1\right )}^{\frac {1}{4}}}{x}\right ) + \frac {1}{4} \, \log \left (\frac {{\left (x^{4} + 1\right )}^{\frac {1}{4}}}{x} + 1\right ) - \frac {1}{4} \, \log \left (\frac {{\left (x^{4} + 1\right )}^{\frac {1}{4}}}{x} - 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^4+1)^(1/4),x, algorithm="maxima")

[Out]

-1/2*arctan((x^4 + 1)^(1/4)/x) + 1/4*log((x^4 + 1)^(1/4)/x + 1) - 1/4*log((x^4 + 1)^(1/4)/x - 1)

________________________________________________________________________________________

mupad [B]  time = 0.20, size = 12, normalized size = 0.36 \begin {gather*} x\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{4},\frac {1}{4};\ \frac {5}{4};\ -x^4\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^4 + 1)^(1/4),x)

[Out]

x*hypergeom([1/4, 1/4], 5/4, -x^4)

________________________________________________________________________________________

sympy [C]  time = 0.72, size = 27, normalized size = 0.82 \begin {gather*} \frac {x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {1}{4} \\ \frac {5}{4} \end {matrix}\middle | {x^{4} e^{i \pi }} \right )}}{4 \Gamma \left (\frac {5}{4}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x**4+1)**(1/4),x)

[Out]

x*gamma(1/4)*hyper((1/4, 1/4), (5/4,), x**4*exp_polar(I*pi))/(4*gamma(5/4))

________________________________________________________________________________________