3.5.100 \(\int \frac {2+x+x^2}{x^2 (1+x^2)^{3/4}} \, dx\)

Optimal. Leaf size=39 \[ -\frac {2 \sqrt [4]{x^2+1}}{x}-\tan ^{-1}\left (\sqrt [4]{x^2+1}\right )-\tanh ^{-1}\left (\sqrt [4]{x^2+1}\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 39, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.316, Rules used = {1807, 266, 63, 212, 206, 203} \begin {gather*} -\frac {2 \sqrt [4]{x^2+1}}{x}-\tan ^{-1}\left (\sqrt [4]{x^2+1}\right )-\tanh ^{-1}\left (\sqrt [4]{x^2+1}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(2 + x + x^2)/(x^2*(1 + x^2)^(3/4)),x]

[Out]

(-2*(1 + x^2)^(1/4))/x - ArcTan[(1 + x^2)^(1/4)] - ArcTanh[(1 + x^2)^(1/4)]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 1807

Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, c*x, x],
 R = PolynomialRemainder[Pq, c*x, x]}, Simp[(R*(c*x)^(m + 1)*(a + b*x^2)^(p + 1))/(a*c*(m + 1)), x] + Dist[1/(
a*c*(m + 1)), Int[(c*x)^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*c*(m + 1)*Q - b*R*(m + 2*p + 3)*x, x], x], x]] /;
FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && LtQ[m, -1] && (IntegerQ[2*p] || NeQ[Expon[Pq, x], 1])

Rubi steps

\begin {align*} \int \frac {2+x+x^2}{x^2 \left (1+x^2\right )^{3/4}} \, dx &=-\frac {2 \sqrt [4]{1+x^2}}{x}+\int \frac {1}{x \left (1+x^2\right )^{3/4}} \, dx\\ &=-\frac {2 \sqrt [4]{1+x^2}}{x}+\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{x (1+x)^{3/4}} \, dx,x,x^2\right )\\ &=-\frac {2 \sqrt [4]{1+x^2}}{x}+2 \operatorname {Subst}\left (\int \frac {1}{-1+x^4} \, dx,x,\sqrt [4]{1+x^2}\right )\\ &=-\frac {2 \sqrt [4]{1+x^2}}{x}-\operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\sqrt [4]{1+x^2}\right )-\operatorname {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\sqrt [4]{1+x^2}\right )\\ &=-\frac {2 \sqrt [4]{1+x^2}}{x}-\tan ^{-1}\left (\sqrt [4]{1+x^2}\right )-\tanh ^{-1}\left (\sqrt [4]{1+x^2}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 39, normalized size = 1.00 \begin {gather*} -\frac {2 \sqrt [4]{x^2+1}}{x}-\tan ^{-1}\left (\sqrt [4]{x^2+1}\right )-\tanh ^{-1}\left (\sqrt [4]{x^2+1}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(2 + x + x^2)/(x^2*(1 + x^2)^(3/4)),x]

[Out]

(-2*(1 + x^2)^(1/4))/x - ArcTan[(1 + x^2)^(1/4)] - ArcTanh[(1 + x^2)^(1/4)]

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 14.60, size = 39, normalized size = 1.00 \begin {gather*} -\frac {2 \sqrt [4]{1+x^2}}{x}-\tan ^{-1}\left (\sqrt [4]{1+x^2}\right )-\tanh ^{-1}\left (\sqrt [4]{1+x^2}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(2 + x + x^2)/(x^2*(1 + x^2)^(3/4)),x]

[Out]

(-2*(1 + x^2)^(1/4))/x - ArcTan[(1 + x^2)^(1/4)] - ArcTanh[(1 + x^2)^(1/4)]

________________________________________________________________________________________

fricas [B]  time = 1.15, size = 77, normalized size = 1.97 \begin {gather*} \frac {x \arctan \left (\frac {2 \, {\left ({\left (x^{2} + 1\right )}^{\frac {3}{4}} + {\left (x^{2} + 1\right )}^{\frac {1}{4}}\right )}}{x^{2}}\right ) + x \log \left (\frac {x^{2} - 2 \, {\left (x^{2} + 1\right )}^{\frac {3}{4}} + 2 \, \sqrt {x^{2} + 1} - 2 \, {\left (x^{2} + 1\right )}^{\frac {1}{4}} + 2}{x^{2}}\right ) - 4 \, {\left (x^{2} + 1\right )}^{\frac {1}{4}}}{2 \, x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+x+2)/x^2/(x^2+1)^(3/4),x, algorithm="fricas")

[Out]

1/2*(x*arctan(2*((x^2 + 1)^(3/4) + (x^2 + 1)^(1/4))/x^2) + x*log((x^2 - 2*(x^2 + 1)^(3/4) + 2*sqrt(x^2 + 1) -
2*(x^2 + 1)^(1/4) + 2)/x^2) - 4*(x^2 + 1)^(1/4))/x

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2} + x + 2}{{\left (x^{2} + 1\right )}^{\frac {3}{4}} x^{2}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+x+2)/x^2/(x^2+1)^(3/4),x, algorithm="giac")

[Out]

integrate((x^2 + x + 2)/((x^2 + 1)^(3/4)*x^2), x)

________________________________________________________________________________________

maple [C]  time = 1.18, size = 56, normalized size = 1.44

method result size
risch \(-\frac {2 \left (x^{2}+1\right )^{\frac {1}{4}}}{x}+\frac {\left (-3 \ln \relax (2)+\frac {\pi }{2}+2 \ln \relax (x )\right ) \Gamma \left (\frac {3}{4}\right )-\frac {3 \hypergeom \left (\left [1, 1, \frac {7}{4}\right ], \left [2, 2\right ], -x^{2}\right ) \Gamma \left (\frac {3}{4}\right ) x^{2}}{4}}{2 \Gamma \left (\frac {3}{4}\right )}\) \(56\)
meijerg \(\hypergeom \left (\left [\frac {1}{2}, \frac {3}{4}\right ], \left [\frac {3}{2}\right ], -x^{2}\right ) x +\frac {\left (-3 \ln \relax (2)+\frac {\pi }{2}+2 \ln \relax (x )\right ) \Gamma \left (\frac {3}{4}\right )-\frac {3 \hypergeom \left (\left [1, 1, \frac {7}{4}\right ], \left [2, 2\right ], -x^{2}\right ) \Gamma \left (\frac {3}{4}\right ) x^{2}}{4}}{2 \Gamma \left (\frac {3}{4}\right )}-\frac {2 \hypergeom \left (\left [-\frac {1}{2}, \frac {3}{4}\right ], \left [\frac {1}{2}\right ], -x^{2}\right )}{x}\) \(73\)
trager \(-\frac {2 \left (x^{2}+1\right )^{\frac {1}{4}}}{x}-\frac {\ln \left (-\frac {2 \left (x^{2}+1\right )^{\frac {3}{4}}+2 \sqrt {x^{2}+1}+x^{2}+2 \left (x^{2}+1\right )^{\frac {1}{4}}+2}{x^{2}}\right )}{2}+\frac {\RootOf \left (\textit {\_Z}^{2}+1\right ) \ln \left (\frac {2 \RootOf \left (\textit {\_Z}^{2}+1\right ) \sqrt {x^{2}+1}-\RootOf \left (\textit {\_Z}^{2}+1\right ) x^{2}-2 \left (x^{2}+1\right )^{\frac {3}{4}}-2 \RootOf \left (\textit {\_Z}^{2}+1\right )+2 \left (x^{2}+1\right )^{\frac {1}{4}}}{x^{2}}\right )}{2}\) \(120\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2+x+2)/x^2/(x^2+1)^(3/4),x,method=_RETURNVERBOSE)

[Out]

-2*(x^2+1)^(1/4)/x+1/2/GAMMA(3/4)*((-3*ln(2)+1/2*Pi+2*ln(x))*GAMMA(3/4)-3/4*hypergeom([1,1,7/4],[2,2],-x^2)*GA
MMA(3/4)*x^2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2} + x + 2}{{\left (x^{2} + 1\right )}^{\frac {3}{4}} x^{2}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+x+2)/x^2/(x^2+1)^(3/4),x, algorithm="maxima")

[Out]

integrate((x^2 + x + 2)/((x^2 + 1)^(3/4)*x^2), x)

________________________________________________________________________________________

mupad [B]  time = 0.55, size = 48, normalized size = 1.23 \begin {gather*} x\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {3}{4};\ \frac {3}{2};\ -x^2\right )-\mathrm {atanh}\left ({\left (x^2+1\right )}^{1/4}\right )-\mathrm {atan}\left ({\left (x^2+1\right )}^{1/4}\right )-\frac {2\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{2},\frac {3}{4};\ \frac {1}{2};\ -x^2\right )}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x + x^2 + 2)/(x^2*(x^2 + 1)^(3/4)),x)

[Out]

x*hypergeom([1/2, 3/4], 3/2, -x^2) - atanh((x^2 + 1)^(1/4)) - atan((x^2 + 1)^(1/4)) - (2*hypergeom([-1/2, 3/4]
, 1/2, -x^2))/x

________________________________________________________________________________________

sympy [C]  time = 3.05, size = 68, normalized size = 1.74 \begin {gather*} x {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {3}{4} \\ \frac {3}{2} \end {matrix}\middle | {x^{2} e^{i \pi }} \right )} - \frac {2 {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {3}{4} \\ \frac {1}{2} \end {matrix}\middle | {x^{2} e^{i \pi }} \right )}}{x} - \frac {\Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{4}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {e^{i \pi }}{x^{2}}} \right )}}{2 x^{\frac {3}{2}} \Gamma \left (\frac {7}{4}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**2+x+2)/x**2/(x**2+1)**(3/4),x)

[Out]

x*hyper((1/2, 3/4), (3/2,), x**2*exp_polar(I*pi)) - 2*hyper((-1/2, 3/4), (1/2,), x**2*exp_polar(I*pi))/x - gam
ma(3/4)*hyper((3/4, 3/4), (7/4,), exp_polar(I*pi)/x**2)/(2*x**(3/2)*gamma(7/4))

________________________________________________________________________________________