3.1.66 \(\int (-1+3 x^2) \sqrt [3]{-x+x^3} \, dx\)

Optimal. Leaf size=15 \[ \frac {3}{4} \left (x^3-x\right )^{4/3} \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 15, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {1588} \begin {gather*} \frac {3}{4} \left (x^3-x\right )^{4/3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-1 + 3*x^2)*(-x + x^3)^(1/3),x]

[Out]

(3*(-x + x^3)^(4/3))/4

Rule 1588

Int[(Pp_)*(Qq_)^(m_.), x_Symbol] :> With[{p = Expon[Pp, x], q = Expon[Qq, x]}, Simp[(Coeff[Pp, x, p]*x^(p - q
+ 1)*Qq^(m + 1))/((p + m*q + 1)*Coeff[Qq, x, q]), x] /; NeQ[p + m*q + 1, 0] && EqQ[(p + m*q + 1)*Coeff[Qq, x,
q]*Pp, Coeff[Pp, x, p]*x^(p - q)*((p - q + 1)*Qq + (m + 1)*x*D[Qq, x])]] /; FreeQ[m, x] && PolyQ[Pp, x] && Pol
yQ[Qq, x] && NeQ[m, -1]

Rubi steps

\begin {align*} \int \left (-1+3 x^2\right ) \sqrt [3]{-x+x^3} \, dx &=\frac {3}{4} \left (-x+x^3\right )^{4/3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 15, normalized size = 1.00 \begin {gather*} \frac {3}{4} \left (x \left (x^2-1\right )\right )^{4/3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-1 + 3*x^2)*(-x + x^3)^(1/3),x]

[Out]

(3*(x*(-1 + x^2))^(4/3))/4

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.01, size = 15, normalized size = 1.00 \begin {gather*} \frac {3}{4} \left (-x+x^3\right )^{4/3} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(-1 + 3*x^2)*(-x + x^3)^(1/3),x]

[Out]

(3*(-x + x^3)^(4/3))/4

________________________________________________________________________________________

fricas [A]  time = 0.44, size = 11, normalized size = 0.73 \begin {gather*} \frac {3}{4} \, {\left (x^{3} - x\right )}^{\frac {4}{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2-1)*(x^3-x)^(1/3),x, algorithm="fricas")

[Out]

3/4*(x^3 - x)^(4/3)

________________________________________________________________________________________

giac [A]  time = 0.31, size = 11, normalized size = 0.73 \begin {gather*} \frac {3}{4} \, {\left (x^{3} - x\right )}^{\frac {4}{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2-1)*(x^3-x)^(1/3),x, algorithm="giac")

[Out]

3/4*(x^3 - x)^(4/3)

________________________________________________________________________________________

maple [A]  time = 0.08, size = 12, normalized size = 0.80

method result size
derivativedivides \(\frac {3 \left (x^{3}-x \right )^{\frac {4}{3}}}{4}\) \(12\)
default \(\frac {3 \left (x^{3}-x \right )^{\frac {4}{3}}}{4}\) \(12\)
trager \(\frac {3 x \left (x^{2}-1\right ) \left (x^{3}-x \right )^{\frac {1}{3}}}{4}\) \(18\)
risch \(\frac {3 \left (x \left (x^{2}-1\right )\right )^{\frac {1}{3}} x \left (x^{2}-1\right )}{4}\) \(18\)
gosper \(\frac {3 \left (1+x \right ) \left (-1+x \right ) x \left (x^{3}-x \right )^{\frac {1}{3}}}{4}\) \(19\)
meijerg \(-\frac {3 \mathrm {signum}\left (x^{2}-1\right )^{\frac {1}{3}} \hypergeom \left (\left [-\frac {1}{3}, \frac {2}{3}\right ], \left [\frac {5}{3}\right ], x^{2}\right ) x^{\frac {4}{3}}}{4 \left (-\mathrm {signum}\left (x^{2}-1\right )\right )^{\frac {1}{3}}}+\frac {9 \mathrm {signum}\left (x^{2}-1\right )^{\frac {1}{3}} \hypergeom \left (\left [-\frac {1}{3}, \frac {5}{3}\right ], \left [\frac {8}{3}\right ], x^{2}\right ) x^{\frac {10}{3}}}{10 \left (-\mathrm {signum}\left (x^{2}-1\right )\right )^{\frac {1}{3}}}\) \(66\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x^2-1)*(x^3-x)^(1/3),x,method=_RETURNVERBOSE)

[Out]

3/4*(x^3-x)^(4/3)

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 11, normalized size = 0.73 \begin {gather*} \frac {3}{4} \, {\left (x^{3} - x\right )}^{\frac {4}{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2-1)*(x^3-x)^(1/3),x, algorithm="maxima")

[Out]

3/4*(x^3 - x)^(4/3)

________________________________________________________________________________________

mupad [B]  time = 0.11, size = 11, normalized size = 0.73 \begin {gather*} \frac {3\,{\left (x^3-x\right )}^{4/3}}{4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3 - x)^(1/3)*(3*x^2 - 1),x)

[Out]

(3*(x^3 - x)^(4/3))/4

________________________________________________________________________________________

sympy [B]  time = 0.18, size = 27, normalized size = 1.80 \begin {gather*} \frac {3 x^{3} \sqrt [3]{x^{3} - x}}{4} - \frac {3 x \sqrt [3]{x^{3} - x}}{4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x**2-1)*(x**3-x)**(1/3),x)

[Out]

3*x**3*(x**3 - x)**(1/3)/4 - 3*x*(x**3 - x)**(1/3)/4

________________________________________________________________________________________