3.10.26 \(\int \frac {\sqrt {1+x}}{\sqrt {x+\sqrt {1+x}}} \, dx\)

Optimal. Leaf size=70 \[ \sqrt {x+1} \sqrt {x+\sqrt {x+1}}-\frac {3}{2} \sqrt {x+\sqrt {x+1}}-\frac {7}{4} \log \left (2 \sqrt {x+1}-2 \sqrt {x+\sqrt {x+1}}+1\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 72, normalized size of antiderivative = 1.03, number of steps used = 5, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {742, 640, 621, 206} \begin {gather*} \sqrt {x+1} \sqrt {x+\sqrt {x+1}}-\frac {3}{2} \sqrt {x+\sqrt {x+1}}+\frac {7}{4} \tanh ^{-1}\left (\frac {2 \sqrt {x+1}+1}{2 \sqrt {x+\sqrt {x+1}}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 + x]/Sqrt[x + Sqrt[1 + x]],x]

[Out]

(-3*Sqrt[x + Sqrt[1 + x]])/2 + Sqrt[1 + x]*Sqrt[x + Sqrt[1 + x]] + (7*ArcTanh[(1 + 2*Sqrt[1 + x])/(2*Sqrt[x +
Sqrt[1 + x]])])/4

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
 1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 742

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 1)), x] + Dist[1/(c*(m + 2*p + 1)), Int[(d + e*x)^(m - 2)*Simp[c*d^2
*(m + 2*p + 1) - e*(a*e*(m - 1) + b*d*(p + 1)) + e*(2*c*d - b*e)*(m + p)*x, x]*(a + b*x + c*x^2)^p, x], x] /;
FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0]
 && If[RationalQ[m], GtQ[m, 1], SumSimplerQ[m, -2]] && NeQ[m + 2*p + 1, 0] && IntQuadraticQ[a, b, c, d, e, m,
p, x]

Rubi steps

\begin {align*} \int \frac {\sqrt {1+x}}{\sqrt {x+\sqrt {1+x}}} \, dx &=2 \operatorname {Subst}\left (\int \frac {x^2}{\sqrt {-1+x+x^2}} \, dx,x,\sqrt {1+x}\right )\\ &=\sqrt {1+x} \sqrt {x+\sqrt {1+x}}+\operatorname {Subst}\left (\int \frac {1-\frac {3 x}{2}}{\sqrt {-1+x+x^2}} \, dx,x,\sqrt {1+x}\right )\\ &=-\frac {3}{2} \sqrt {x+\sqrt {1+x}}+\sqrt {1+x} \sqrt {x+\sqrt {1+x}}+\frac {7}{4} \operatorname {Subst}\left (\int \frac {1}{\sqrt {-1+x+x^2}} \, dx,x,\sqrt {1+x}\right )\\ &=-\frac {3}{2} \sqrt {x+\sqrt {1+x}}+\sqrt {1+x} \sqrt {x+\sqrt {1+x}}+\frac {7}{2} \operatorname {Subst}\left (\int \frac {1}{4-x^2} \, dx,x,\frac {1+2 \sqrt {1+x}}{\sqrt {x+\sqrt {1+x}}}\right )\\ &=-\frac {3}{2} \sqrt {x+\sqrt {1+x}}+\sqrt {1+x} \sqrt {x+\sqrt {1+x}}+\frac {7}{4} \tanh ^{-1}\left (\frac {1+2 \sqrt {1+x}}{2 \sqrt {x+\sqrt {1+x}}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 62, normalized size = 0.89 \begin {gather*} \frac {1}{2} \sqrt {x+\sqrt {x+1}} \left (2 \sqrt {x+1}-3\right )+\frac {7}{4} \tanh ^{-1}\left (\frac {2 \sqrt {x+1}+1}{2 \sqrt {x+\sqrt {x+1}}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[1 + x]/Sqrt[x + Sqrt[1 + x]],x]

[Out]

(Sqrt[x + Sqrt[1 + x]]*(-3 + 2*Sqrt[1 + x]))/2 + (7*ArcTanh[(1 + 2*Sqrt[1 + x])/(2*Sqrt[x + Sqrt[1 + x]])])/4

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.15, size = 60, normalized size = 0.86 \begin {gather*} \frac {1}{2} \sqrt {x+\sqrt {1+x}} \left (-3+2 \sqrt {1+x}\right )-\frac {7}{4} \log \left (-1-2 \sqrt {1+x}+2 \sqrt {x+\sqrt {1+x}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[1 + x]/Sqrt[x + Sqrt[1 + x]],x]

[Out]

(Sqrt[x + Sqrt[1 + x]]*(-3 + 2*Sqrt[1 + x]))/2 - (7*Log[-1 - 2*Sqrt[1 + x] + 2*Sqrt[x + Sqrt[1 + x]]])/4

________________________________________________________________________________________

fricas [A]  time = 0.90, size = 56, normalized size = 0.80 \begin {gather*} \frac {1}{2} \, \sqrt {x + \sqrt {x + 1}} {\left (2 \, \sqrt {x + 1} - 3\right )} + \frac {7}{8} \, \log \left (4 \, \sqrt {x + \sqrt {x + 1}} {\left (2 \, \sqrt {x + 1} + 1\right )} + 8 \, x + 8 \, \sqrt {x + 1} + 5\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(1/2)/(x+(1+x)^(1/2))^(1/2),x, algorithm="fricas")

[Out]

1/2*sqrt(x + sqrt(x + 1))*(2*sqrt(x + 1) - 3) + 7/8*log(4*sqrt(x + sqrt(x + 1))*(2*sqrt(x + 1) + 1) + 8*x + 8*
sqrt(x + 1) + 5)

________________________________________________________________________________________

giac [A]  time = 0.36, size = 44, normalized size = 0.63 \begin {gather*} \frac {1}{2} \, \sqrt {x + \sqrt {x + 1}} {\left (2 \, \sqrt {x + 1} - 3\right )} - \frac {7}{4} \, \log \left (-2 \, \sqrt {x + \sqrt {x + 1}} + 2 \, \sqrt {x + 1} + 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(1/2)/(x+(1+x)^(1/2))^(1/2),x, algorithm="giac")

[Out]

1/2*sqrt(x + sqrt(x + 1))*(2*sqrt(x + 1) - 3) - 7/4*log(-2*sqrt(x + sqrt(x + 1)) + 2*sqrt(x + 1) + 1)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 47, normalized size = 0.67

method result size
derivativedivides \(\sqrt {1+x}\, \sqrt {x +\sqrt {1+x}}-\frac {3 \sqrt {x +\sqrt {1+x}}}{2}+\frac {7 \ln \left (\frac {1}{2}+\sqrt {1+x}+\sqrt {x +\sqrt {1+x}}\right )}{4}\) \(47\)
default \(\sqrt {1+x}\, \sqrt {x +\sqrt {1+x}}-\frac {3 \sqrt {x +\sqrt {1+x}}}{2}+\frac {7 \ln \left (\frac {1}{2}+\sqrt {1+x}+\sqrt {x +\sqrt {1+x}}\right )}{4}\) \(47\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+x)^(1/2)/(x+(1+x)^(1/2))^(1/2),x,method=_RETURNVERBOSE)

[Out]

(1+x)^(1/2)*(x+(1+x)^(1/2))^(1/2)-3/2*(x+(1+x)^(1/2))^(1/2)+7/4*ln(1/2+(1+x)^(1/2)+(x+(1+x)^(1/2))^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {x + 1}}{\sqrt {x + \sqrt {x + 1}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(1/2)/(x+(1+x)^(1/2))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(x + 1)/sqrt(x + sqrt(x + 1)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {x+1}}{\sqrt {x+\sqrt {x+1}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x + 1)^(1/2)/(x + (x + 1)^(1/2))^(1/2),x)

[Out]

int((x + 1)^(1/2)/(x + (x + 1)^(1/2))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {x + 1}}{\sqrt {x + \sqrt {x + 1}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)**(1/2)/(x+(1+x)**(1/2))**(1/2),x)

[Out]

Integral(sqrt(x + 1)/sqrt(x + sqrt(x + 1)), x)

________________________________________________________________________________________