27.10 Problem number 1162

\[ \int \frac {(a+i a \tan (e+f x))^{3/2}}{(c+d \tan (e+f x))^{3/2}} \, dx \]

Optimal antiderivative \[ -\frac {2 \,\mathrm {I} a^{\frac {3}{2}} \arctanh \! \left (\frac {\sqrt {2}\, \sqrt {a}\, \sqrt {c +d \tan \left (f x +e \right )}}{\sqrt {c -\mathrm {I} d}\, \sqrt {a +\mathrm {I} a \tan \left (f x +e \right )}}\right ) \sqrt {2}}{\left (c -\mathrm {I} d \right )^{\frac {3}{2}} f}-\frac {2 a \sqrt {a +\mathrm {I} a \tan \! \left (f x +e \right )}}{\left (\mathrm {I} c +d \right ) f \sqrt {c +d \tan \! \left (f x +e \right )}} \]

command

integrate((a+I*a*tan(f*x+e))^(3/2)/(c+d*tan(f*x+e))^(3/2),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {Exception raised: TypeError} \]

Giac 1.7.0 via sagemath 9.3 output

\[ \frac {\sqrt {2 \, a d^{2} + 2 \, \sqrt {{\left (d \tan \left (f x + e\right ) + c\right )}^{2} - 2 \, {\left (d \tan \left (f x + e\right ) + c\right )} c + c^{2} + d^{2}} a d} a {\left (\frac {i \, {\left (d \tan \left (f x + e\right ) + c\right )} a d - i \, a c d}{a d^{2} + \sqrt {{\left (d \tan \left (f x + e\right ) + c\right )}^{2} a^{2} d^{2} - 2 \, {\left (d \tan \left (f x + e\right ) + c\right )} a^{2} c d^{2} + a^{2} c^{2} d^{2} + a^{2} d^{4}}} + 1\right )} \log \left ({\left | d \tan \left (f x + e\right ) + c \right |}\right )}{2 \, {\left (-i \, {\left (d \tan \left (f x + e\right ) + c\right )}^{2} d + {\left (i \, d \tan \left (f x + e\right ) + i \, c\right )} c d + {\left (d \tan \left (f x + e\right ) + c\right )} d^{2}\right )}} \]