28.4 Problem number 429

\[ \int \frac {1}{(-5+4 \cos (d+e x)+3 \sin (d+e x))^{5/2}} \, dx \]

Optimal antiderivative \[ \frac {3 \cos \! \left (e x +d \right )-4 \sin \! \left (e x +d \right )}{20 e \left (-5+4 \cos \! \left (e x +d \right )+3 \sin \! \left (e x +d \right )\right )^{\frac {5}{2}}}-\frac {3 \left (3 \cos \! \left (e x +d \right )-4 \sin \! \left (e x +d \right )\right )}{400 e \left (-5+4 \cos \! \left (e x +d \right )+3 \sin \! \left (e x +d \right )\right )^{\frac {3}{2}}}-\frac {3 \arctan \! \left (\frac {\sin \left (d +e x -\arctan \left (\frac {3}{4}\right )\right ) \sqrt {2}}{2 \sqrt {-1+\cos \left (d +e x -\arctan \left (\frac {3}{4}\right )\right )}}\right ) \sqrt {10}}{4000 e} \]

command

integrate(1/(-5+4*cos(e*x+d)+3*sin(e*x+d))^(5/2),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {Exception raised: TypeError} \]

Giac 1.7.0 via sagemath 9.3 output

\[ -\frac {1}{162000} \, {\left (\frac {243 \, \sqrt {10} \arctan \left (\frac {1}{10} \, \sqrt {10} {\left (3 i \, \sqrt {\tan \left (\frac {1}{2} \, x e + \frac {1}{2} \, d\right )^{2} + 1} - 3 i \, \tan \left (\frac {1}{2} \, x e + \frac {1}{2} \, d\right ) + i\right )}\right )}{\mathrm {sgn}\left (-3 \, \tan \left (\frac {1}{2} \, x e + \frac {1}{2} \, d\right ) + 1\right )} + \frac {10 \, {\left (15039 i \, {\left (\sqrt {\tan \left (\frac {1}{2} \, x e + \frac {1}{2} \, d\right )^{2} + 1} - \tan \left (\frac {1}{2} \, x e + \frac {1}{2} \, d\right )\right )}^{7} + 6291 i \, {\left (\sqrt {\tan \left (\frac {1}{2} \, x e + \frac {1}{2} \, d\right )^{2} + 1} - \tan \left (\frac {1}{2} \, x e + \frac {1}{2} \, d\right )\right )}^{6} - 579 i \, {\left (\sqrt {\tan \left (\frac {1}{2} \, x e + \frac {1}{2} \, d\right )^{2} + 1} - \tan \left (\frac {1}{2} \, x e + \frac {1}{2} \, d\right )\right )}^{5} + 1645 i \, {\left (\sqrt {\tan \left (\frac {1}{2} \, x e + \frac {1}{2} \, d\right )^{2} + 1} - \tan \left (\frac {1}{2} \, x e + \frac {1}{2} \, d\right )\right )}^{4} + 25365 i \, {\left (\sqrt {\tan \left (\frac {1}{2} \, x e + \frac {1}{2} \, d\right )^{2} + 1} - \tan \left (\frac {1}{2} \, x e + \frac {1}{2} \, d\right )\right )}^{3} - 11367 i \, {\left (\sqrt {\tan \left (\frac {1}{2} \, x e + \frac {1}{2} \, d\right )^{2} + 1} - \tan \left (\frac {1}{2} \, x e + \frac {1}{2} \, d\right )\right )}^{2} + 4887 i \, \sqrt {\tan \left (\frac {1}{2} \, x e + \frac {1}{2} \, d\right )^{2} + 1} - 4887 i \, \tan \left (\frac {1}{2} \, x e + \frac {1}{2} \, d\right ) + 3807 i\right )}}{{\left (3 i \, {\left (\sqrt {\tan \left (\frac {1}{2} \, x e + \frac {1}{2} \, d\right )^{2} + 1} - \tan \left (\frac {1}{2} \, x e + \frac {1}{2} \, d\right )\right )}^{2} + 2 i \, \sqrt {\tan \left (\frac {1}{2} \, x e + \frac {1}{2} \, d\right )^{2} + 1} - 2 i \, \tan \left (\frac {1}{2} \, x e + \frac {1}{2} \, d\right ) - 3 i\right )}^{4} \mathrm {sgn}\left (-3 \, \tan \left (\frac {1}{2} \, x e + \frac {1}{2} \, d\right ) + 1\right )}\right )} e^{\left (-1\right )} \]