\[ \int \sqrt {x} \text {ArcTan}\left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right ) \, dx \]
Optimal antiderivative \[ \frac {2 x^{\frac {3}{2}} \arctan \! \left (\frac {x \sqrt {-e}}{\sqrt {e \,x^{2}+d}}\right )}{3}+\frac {4 \sqrt {x}\, \sqrt {e \,x^{2}+d}}{9 \sqrt {-e}}+\frac {2 d^{\frac {3}{4}} \sqrt {\frac {\cos \left (4 \arctan \left (\frac {e^{\frac {1}{4}} \sqrt {x}}{d^{\frac {1}{4}}}\right )\right )}{2}+\frac {1}{2}}\, \EllipticF \! \left (\sin \! \left (2 \arctan \! \left (\frac {e^{\frac {1}{4}} \sqrt {x}}{d^{\frac {1}{4}}}\right )\right ), \frac {\sqrt {2}}{2}\right ) \sqrt {-e}\, \left (\sqrt {d}+x \sqrt {e}\right ) \sqrt {\frac {e \,x^{2}+d}{\left (\sqrt {d}+x \sqrt {e}\right )^{2}}}}{9 \cos \! \left (2 \arctan \! \left (\frac {e^{\frac {1}{4}} \sqrt {x}}{d^{\frac {1}{4}}}\right )\right ) e^{\frac {5}{4}} \sqrt {e \,x^{2}+d}} \]
command
integrate(x^(1/2)*arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2)),x, algorithm="giac")
Giac 1.9.0-11 via sagemath 9.6 output
\[ \text {could not integrate} \]
Giac 1.7.0 via sagemath 9.3 output
\[ +\infty \]