\[ \int \frac {\tanh ^2(e+f x)}{\left (a+a \sinh ^2(e+f x)\right )^{3/2}} \, dx \]
Optimal antiderivative \[ \frac {\arctan \! \left (\sinh \! \left (f x +e \right )\right ) \cosh \! \left (f x +e \right )}{8 a f \sqrt {a \left (\cosh ^{2}\left (f x +e \right )\right )}}+\frac {\tanh \! \left (f x +e \right )}{8 a f \sqrt {a \left (\cosh ^{2}\left (f x +e \right )\right )}}-\frac {\mathrm {sech}\! \left (f x +e \right )^{2} \tanh \! \left (f x +e \right )}{4 a f \sqrt {a \left (\cosh ^{2}\left (f x +e \right )\right )}} \]
command
integrate(tanh(f*x+e)^2/(a+a*sinh(f*x+e)^2)^(3/2),x, algorithm="giac")
Giac 1.9.0-11 via sagemath 9.6 output
\[ \text {Exception raised: TypeError} \]
Giac 1.7.0 via sagemath 9.3 output
\[ \frac {\frac {\arctan \left (e^{\left (f x + e\right )}\right )}{a^{\frac {3}{2}}} + \frac {\sqrt {a} e^{\left (7 \, f x + 7 \, e\right )} - 7 \, \sqrt {a} e^{\left (5 \, f x + 5 \, e\right )} + 7 \, \sqrt {a} e^{\left (3 \, f x + 3 \, e\right )} - \sqrt {a} e^{\left (f x + e\right )}}{a^{2} {\left (e^{\left (2 \, f x + 2 \, e\right )} + 1\right )}^{4}}}{4 \, f} \]