33.5 Problem number 34

\[ \int \frac {\sinh ^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx \]

Optimal antiderivative \[ -\frac {\left (a -b \right ) \cosh \! \left (d x +c \right )}{\left (a +b \right )^{3} d}+\frac {\cosh ^{3}\left (d x +c \right )}{3 \left (a +b \right )^{2} d}+\frac {a b \,\mathrm {sech}\! \left (d x +c \right )}{2 \left (a +b \right )^{3} d \left (a +b -b \mathrm {sech}\! \left (d x +c \right )^{2}\right )}+\frac {\left (3 a -2 b \right ) \arctanh \! \left (\frac {\mathrm {sech}\left (d x +c \right ) \sqrt {b}}{\sqrt {a +b}}\right ) \sqrt {b}}{2 \left (a +b \right )^{\frac {7}{2}} d} \]

command

integrate(sinh(d*x+c)^3/(a+b*tanh(d*x+c)^2)^2,x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {Exception raised: TypeError} \]

Giac 1.7.0 via sagemath 9.3 output

\[ \text {output too large to display} \]