33.18 Problem number 115

\[ \int \frac {\cosh ^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx \]

Optimal antiderivative \[ \frac {b^{2} \left (6 a +b \right ) \arctan \! \left (\frac {\sinh \left (d x +c \right ) \sqrt {a +b}}{\sqrt {a}}\right )}{2 a^{\frac {3}{2}} \left (a +b \right )^{\frac {7}{2}} d}+\frac {\left (a +3 b \right ) \sinh \! \left (d x +c \right )}{\left (a +b \right )^{3} d}+\frac {\sinh ^{3}\left (d x +c \right )}{3 \left (a +b \right )^{2} d}+\frac {b^{3} \sinh \! \left (d x +c \right )}{2 a \left (a +b \right )^{3} d \left (a +\left (a +b \right ) \left (\sinh ^{2}\left (d x +c \right )\right )\right )} \]

command

integrate(cosh(d*x+c)^3/(a+b*tanh(d*x+c)^2)^2,x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {Exception raised: TypeError} \]

Giac 1.7.0 via sagemath 9.3 output

\[ \text {output too large to display} \]