33.25 Problem number 127

\[ \int \frac {\text {sech}(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^3} \, dx \]

Optimal antiderivative \[ \frac {\left (8 a^{2}+8 a b +3 b^{2}\right ) \arctan \! \left (\frac {\sinh \left (d x +c \right ) \sqrt {a +b}}{\sqrt {a}}\right )}{8 a^{\frac {5}{2}} \left (a +b \right )^{\frac {5}{2}} d}+\frac {b \left (\cosh ^{2}\left (d x +c \right )\right ) \sinh \! \left (d x +c \right )}{4 a \left (a +b \right ) d \left (a +\left (a +b \right ) \left (\sinh ^{2}\left (d x +c \right )\right )\right )^{2}}+\frac {3 b \left (2 a +b \right ) \sinh \! \left (d x +c \right )}{8 a^{2} \left (a +b \right )^{2} d \left (a +\left (a +b \right ) \left (\sinh ^{2}\left (d x +c \right )\right )\right )} \]

command

integrate(sech(d*x+c)/(a+b*tanh(d*x+c)^2)^3,x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {Exception raised: TypeError} \]

Giac 1.7.0 via sagemath 9.3 output

\[ \text {output too large to display} \]