37.2 Problem number 6

\[ \int \frac {\tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{x^5} \, dx \]

Optimal antiderivative \[ -\frac {\arctanh \! \left (\frac {x \sqrt {e}}{\sqrt {e \,x^{2}+d}}\right )}{4 x^{4}}+\frac {e^{\frac {3}{2}} \sqrt {e \,x^{2}+d}}{6 d^{2} x}-\frac {\sqrt {e}\, \sqrt {e \,x^{2}+d}}{12 d \,x^{3}} \]

command

integrate(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^5,x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {Timed out} \]

Giac 1.7.0 via sagemath 9.3 output

\[ \frac {{\left (3 \, {\left (x e^{\frac {1}{2}} - \sqrt {x^{2} e + d}\right )}^{2} d e - d^{2} e\right )} e}{3 \, {\left ({\left (x e^{\frac {1}{2}} - \sqrt {x^{2} e + d}\right )}^{2} - d\right )}^{3} d} - \frac {\log \left (-\frac {\frac {x e^{\frac {1}{2}}}{\sqrt {x^{2} e + d}} + 1}{\frac {x e^{\frac {1}{2}}}{\sqrt {x^{2} e + d}} - 1}\right )}{8 \, x^{4}} \]