38.13 Problem number 244

\[ \int e^{3 \coth ^{-1}(a x)} (c-a c x)^{7/2} \, dx \]

Optimal antiderivative \[ -\frac {44 \left (1+\frac {1}{a x}\right )^{\frac {5}{2}} \left (-a c x +c \right )^{\frac {7}{2}}}{63 a \left (1-\frac {1}{a x}\right )^{\frac {7}{2}}}+\frac {214 \left (1+\frac {1}{a x}\right )^{\frac {5}{2}} \left (-a c x +c \right )^{\frac {7}{2}}}{315 a^{2} \left (1-\frac {1}{a x}\right )^{\frac {7}{2}} x}+\frac {2 \left (1+\frac {1}{a x}\right )^{\frac {5}{2}} x \left (-a c x +c \right )^{\frac {7}{2}}}{9 \left (1-\frac {1}{a x}\right )^{\frac {7}{2}}} \]

command

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a*c*x+c)^(7/2),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {Exception raised: TypeError} \]

Giac 1.7.0 via sagemath 9.3 output

\[ -\frac {2 \, {\left (\frac {128 \, \sqrt {2} \sqrt {-c} c^{3}}{\mathrm {sgn}\left (c\right )} + \frac {35 \, {\left (a c x + c\right )}^{4} \sqrt {-a c x - c} - 180 \, {\left (a c x + c\right )}^{3} \sqrt {-a c x - c} c + 252 \, {\left (a c x + c\right )}^{2} \sqrt {-a c x - c} c^{2}}{c \mathrm {sgn}\left (-a c x - c\right )}\right )}}{315 \, a} \]