38.21 Problem number 315

\[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx \]

Optimal antiderivative \[ \frac {\sqrt {1+\frac {1}{a x}}\, \sqrt {-a c x +c}}{x \sqrt {1-\frac {1}{a x}}}+\frac {5 \arcsinh \! \left (\frac {\sqrt {\frac {1}{x}}}{\sqrt {a}}\right ) \sqrt {a}\, \sqrt {\frac {1}{x}}\, \sqrt {-a c x +c}}{\sqrt {1-\frac {1}{a x}}}-\frac {4 \arctanh \! \left (\frac {\sqrt {2}\, \sqrt {\frac {1}{x}}}{\sqrt {a}\, \sqrt {1+\frac {1}{a x}}}\right ) \sqrt {2}\, \sqrt {a}\, \sqrt {\frac {1}{x}}\, \sqrt {-a c x +c}}{\sqrt {1-\frac {1}{a x}}} \]

command

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a*c*x+c)^(1/2)/x^2,x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {Exception raised: TypeError} \]

Giac 1.7.0 via sagemath 9.3 output

\[ -\frac {\frac {4 \, \sqrt {2} a^{2} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {-a c x - c}}{2 \, \sqrt {c}}\right )}{\mathrm {sgn}\left (-a c x - c\right )} - \frac {5 \, a^{2} \sqrt {c} \arctan \left (\frac {\sqrt {-a c x - c}}{\sqrt {c}}\right )}{\mathrm {sgn}\left (-a c x - c\right )} - \frac {-4 i \, \sqrt {2} a^{2} \sqrt {-c} \arctan \left (-i\right ) + 5 i \, a^{2} \sqrt {-c} \arctan \left (-i \, \sqrt {2}\right ) + \sqrt {2} a^{2} \sqrt {-c}}{\mathrm {sgn}\left (c\right )} - \frac {\sqrt {-a c x - c} a}{x \mathrm {sgn}\left (-a c x - c\right )}}{a} \]