38.31 Problem number 477

\[ \int \frac {e^{-2 \coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^{5/2}} \, dx \]

Optimal antiderivative \[ \frac {\arctanh \! \left (\frac {\sqrt {c -\frac {c}{a x}}}{\sqrt {c}}\right )}{a \,c^{\frac {5}{2}}}+\frac {\arctanh \! \left (\frac {\sqrt {c -\frac {c}{a x}}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sqrt {2}}{2 a \,c^{\frac {5}{2}}}-\frac {2}{a \,c^{2} \sqrt {c -\frac {c}{a x}}}+\frac {x}{c^{2} \sqrt {c -\frac {c}{a x}}} \]

command

integrate((a*x-1)/(a*x+1)/(c-c/a/x)^(5/2),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {Exception raised: TypeError} \]

Giac 1.7.0 via sagemath 9.3 output

\[ -\frac {1}{2} \, a c {\left (\frac {\sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a c x - c}{a x}}}{2 \, \sqrt {-c}}\right )}{a^{2} \sqrt {-c} c^{3}} + \frac {2 \, \arctan \left (\frac {\sqrt {\frac {a c x - c}{a x}}}{\sqrt {-c}}\right )}{a^{2} \sqrt {-c} c^{3}} + \frac {2 \, {\left (c - \frac {2 \, {\left (a c x - c\right )}}{a x}\right )}}{{\left (c \sqrt {\frac {a c x - c}{a x}} - \frac {{\left (a c x - c\right )} \sqrt {\frac {a c x - c}{a x}}}{a x}\right )} a^{2} c^{3}}\right )} \]