38.40 Problem number 776

\[ \int \frac {e^{\coth ^{-1}(a x)}}{c-\frac {c}{a^2 x^2}} \, dx \]

Optimal antiderivative \[ \frac {\arctanh \! \left (\sqrt {1-\frac {1}{a x}}\, \sqrt {1+\frac {1}{a x}}\right )}{a c}-\frac {2 \sqrt {1+\frac {1}{a x}}}{a c \sqrt {1-\frac {1}{a x}}}+\frac {x \sqrt {1+\frac {1}{a x}}}{c \sqrt {1-\frac {1}{a x}}} \]

command

integrate(1/((a*x-1)/(a*x+1))^(1/2)/(c-c/a^2/x^2),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {could not integrate} \]

Giac 1.7.0 via sagemath 9.3 output

\[ a {\left (\frac {\log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a^{2} c} - \frac {\log \left ({\left | \sqrt {\frac {a x - 1}{a x + 1}} - 1 \right |}\right )}{a^{2} c} - \frac {\frac {3 \, {\left (a x - 1\right )}}{a x + 1} - 1}{a^{2} c {\left (\frac {{\left (a x - 1\right )} \sqrt {\frac {a x - 1}{a x + 1}}}{a x + 1} - \sqrt {\frac {a x - 1}{a x + 1}}\right )}}\right )} \]